
AU-AIOJ «438 RESEARCH TRIANGLE INST RESEARCH TRIANGLE PARK NC SYST—ETC F/G Q/-1

A PRELIMINARY TESTABILITY ANALYST, OF THE MIL-STD-186? ARCHITFC— ETC (ID
AUG 81 F M SMITH. J A HANNISTER DAAK8n-79-C-07ß(l

UNCLASSIFIED RTI/1822/0«*-02F CECOM-80-0780-F NL

I

END

10-81

M •IBP
OT fftEK

1 1 i.o l:iä «IM

1 I i.i L" '-

I III1'25 111u III1-6

MICROCOPY msoiUIION MSI CHAR!

NAIIONAl HU7M iTMCMRDB l"' A\

•i

I

00
CO

CO

LEVEL /r

RESEARCH AND DEVELOPMENT TECHNICAL REPORT
CECOM " 80-0780-F

I
I A PRELIMINARY TESTABILITY ANALYSIS OF THE MIL-STD-1862 ARCHITECTURE

F. M. Smith
J. A. Bannister
Research Triangle Institute
P.O. Box 12194
Research Triangle Park, NC 27709

August 1981

Final Report for period 22 May 1979 to 31 December 1980

DISTRIBUTION STATEMENT , . p

Approved for public release; distribution unlimited.

tj Prepared for:

I CENTER FOR TACTICAL rnKPUTER SYSTEMS

L *
9/ -

jM CECOM
' 0 S ARMY COMMUNICATIONS-ELECTRONICS COMMAND

*
FORT MONMOUTN, NEW JERSEY 07703

80 8 28 004
HISA-FM-l566-81

SECURITY CLASSIFICATION OF THIS PAGE (When Df Enlorod)

i m

I

f c

1. REPO

REPORT DOCUMENTATION PAGE

CEC0M|J8fr-078O-F,/ '
2. OOVT ACCESSION NO.

A3-A/0-3.
4. TITLE fan* Subtltlo)

/ A Preliminary Testability Analysis of the
Mil-STD-1862 Architecture.

/

7. AUTHORf».)

I F
jTHORf»; 1 .

. M./Smith/ J. A./

il
Bannister J.

*- mufoawma »ma. mm^sm NUMB««

•R~TI/1822/6~4-02FY
T^5ä?5*5CTöWWAN r NUMBER/»

DAAK80-79-C-0730/ '.

9- PERFORMING ORGANIZATION NAME ANO AOORESS

Research Triangle Instvfetrte
Systems and Measurements Divteron
P.O. Box 12194
Research Triangle Park. .NC 27709

It. CONTROLLING OFFICE NAME ANO ADDRESS "(TJETTTRCi] ~Z-
Test, Measurement S Diagnostic Systems Division (ll
U.S. Army Communications-Electronics Comm. \L^
Fort Monmouth, NJ 07703 DRSEL-TCS-MS

U. MCN.TORINO AGENCY NAME ft AODRESSC« dllloront from Controlling Olllco)

Test, Measurement & Diagnostic Systems Division
U.S. Army Communications-Electronic Comm.
Ft. Monmouth, NJ 07703 fWji

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

938
TYPE O* «SPORT * PERIOD COVERED

Final Repwrt

10. PROGRAM ELEMENT, PROJECT, TASK
AREA ft WORK UNIT NUMBERS

Task 4.0

ML SBCgfll DATE

August 1081
U. ftVUBTn OF"P~AGES

81
IS. SECURITY CLASS. (ol thlt rmport)

Unclassified

IS«. DECLASSIFICATION/DOWNGRAOINO
SCHEDULE

IS. DISTRIBUTION STATEMENT for thl. Roporl)

Approved for Public Release
Distribution Unlimited

17. DISTRIBUTION STATEMENT (ol (fio »burocl «iitrtd In Slock 10, II dlll»ronl Irom Koport)

I«. SUPPLEMENTARY NOTES

^«button/
*Vfii I -:, 1, I ,. -J

IS. KEY WORDS rConrmu« on rowor»» aid» II n»co»»mry and Idontlty by block numbor)

\

Built-in-Test, Exceptions, Interrupts, Rollback-an-Recovery, Retry, ADA

bv
2C A**TR»CT ((Continue on rovowoo »loo 1$ rwco»»mry ond Idontlly by block numbor)

is study has addressed the ramifications of built-in-test (BIT) as an
integral part of the military computer family (MCF) architecture. This was
done by looking at concurrent and nonconcorrent BIT and how it would fit into
the current MCF architecture specifications.

The current reporting mechanisms in the MCF architecture were evaluated to
see which would best serve as a reporting mechanism for concurrent BIT signals.

K-.x

OD | JAM
M

7J 1473 COITION OF I NOV «SIS OBSOLETE / y//^-, / /
SECURITY CLASSIFICATION O:- THIS PAGE -»t.on Dot» Enlorod)

L

SKCmrTV CLASSIFICATION Of THIS FACgfW*— Bmtm Matmm*)

As an upshot of error detection, an error recovery strategy is proposed. As a
consequence of this comprehensive recovery strategy, a set of instructions are
proposed that would aid in error recovery.

Test and recovery in software is the main thrust of the nonconcurrent BIT
section of this study. An error "data base" is proposed. This data base could
be c.ccessed as a history by maintenance personnel to provide information to
an intelligent error handler and to provide information for reconfiguration
control. Several instructions are proposed for doing fault diagnosis and
•isolation. Rollback and recovery is discussed along with the concept of a
recovery cache.

'E
SECURITY CLASSIFICATION OF THIS PAO€<Whmn Dmtm Kntmrvl)

PREFACE

This report was prepared for the Test Measurement and Diagnostic Systems

(TMDS) Division of the U.S. Army Communications Research and Development Command

(CORADCOM). The Project technical monitor was George Burbank of TMDS.

This report was prepared by F. M. Smith and J. A. Bannister of the Digital

Systems Research Section, Systems Engineering Department of the Research

Triangle Institute.

The authors wish to thank William Dietz, Leland Szeweranko and Mario

Barbacci, of Carnegie-Mellon University, for many interesting and informative

discussions about the MIL-STD-1862 architecture.

tm

-

TABLE OF CONTENTS

Page

PREFACE i

LIST OF FIGURES iii

LIST OF TABLES fil

1. INTRODUCTION 1

2. CONCURRENT BUILT-IN-TESTS 4

a. Exceptions 5

(1) The software exception 6
(2) The hardware exception 9

b. Interrupts 10
c. Exception and interrupt facilities 10

(1) Procedure-associated exception facility 12
(2) Supervisor exception facility 12
(3) Interrupt facility 13

d. Retry 14

(1) Returning from hardware exceptions 14
(2) Returning from interrupts 15
(3) Returning from software exceptions 17
(4) Saving the interrupted state 23
(5) Software retry 24

e. Level for action 25

3. NONCONCURRENT BUILT-IN-TESTS 29

a. Test Instructions 32
b. Diagnostics 37
c. Software-oriented test and recovery 38

4. CONCLUSION 42

REFERENCES 45

APPENDIX A. MIL-STD-1862.ISP Description 48

ii

mm

LIST OF FIGURES

Figure No.

1

2

3 (a)
(b)

4

5

6

7

8

Title Page

A Taxonomy of Computer Test Approaches [7] 3

Cycles and Phases in Instruction Interpretation. . 16

Multiphase Execution Cycle 18
Actions in a Phase 18

Recovery Block Diagram 27

Top Level Organization for Software-Based
Diagnostics 31

Syndrome Register for Module 34

Syndrome Registers for BIT and Module 35

Recovery Cache Block Diagram 41

LIST OF TABLES

Table No. Title

1 Characterization of Software Exceptions,
Hardware Exceptions and Interrupts from
MIL-STD-1862

Page

11

iii

1. INTRODUCTION

The Military Computer Family (MCF) concept calls for the government to

relinquish specific implementation control and specify only form, fit, and

function (F3) requirements [7]. As a consequence, an area of concern is that

of built-in-test (BIT), a critical component of the MCF maintenance concept

[1,2]. Because of the F3 procurement approach, BIT is specified by stating

requirements in terms of "percentage of failures detected" rather than in terms

of specific BIT techniques. For example, the AN/UYK-41 member of the Military

Computer Family, has a fault detection objective of 98 percent with less than a

1 percent false alarm rate.

In previous studies of self-test approaches for MCF, RTI identified BIT

mechanisms and their corresponding fault manifestations [3,4]. In this earlier

work, RTI studied the effects of faults on software program behavior [4], The

approach taken was to describe an implementation of the existing MCF

architecture, PDP-11/70, using the Instruction Set Processor language (ISP).

The ISP description was simulated and faults injected [5]. Selected test

programs were run using simulation and the impact of these faults on the

software observed. The resulting fault manifestations were characterized and

their cause and effect relationships analyzed.

The initial PDP-11/70 architecture, has been superseded by a new 32-bit

architecture defined by MIL-STD-1862 [6]. The new architecture has not yet been

implemented, so now is an appropriate juncture for a critical analysis of its

predicted testability characteristics. Modifications and additions to existing

MIL-STD-1862 features should be incorporated as early as possible in the

development process in order to ensure the testability of future

implementations.

This report discusses MIL-STD-1862 built-in-test and the implications of

BIT for the software. This work is a logical follow-on to RTI's previous work

on BIT approaches for detecting errors and handling these errors in MCF

machines.

Built-in-Test approaches discussed in this report fall into two categories;

concurrent and nonconcurrent BIT (as shown in Figure 1 and discussed in

Reference [7]). The present report is divided into two sections which discuss

BIT and BIT-related problems in both the concurrent and the nonconcurrent BIT

MM,

I
I

categories. In the concurrent BIT discussion, exceptions and interrupts are

defined in terms that expand upon the explanations found in MIL-STD-1862 and the

MCF prime item specifications [1,2]. For example, MIL-STD-1862 does not address

the questions of how BIT signals are to be reported to software. Instead, it

mentions two BIT signals that make use of the MIL-STD-1862 interrupt mechanism

and goes no further. This report analyzes three mechanisms that currently exist

in the MCF architecture that could be used fo. reporting BIT errors. Based on

this analysis, a reporting mechanism for MCF is then recommended. With the

knowledge that many BIT-detected errors will be transient in nature, the idea of

a "retry" mechanism is presented, along with an explanation of why it is needed

in hardware and why it would be beneficial via software [8]. Finally, an

integral method of handling BIT signals using both hardware and software is

presented.

The second section of this report discusses nonconcurrent BIT issues and

alternatives. An overview of software error handling in the operating system

environment is presented. In the context of software error handling, the

ability to explicitly test improperly functioning units is addressed along with

several instructions that could be used for testing these units. Finally,

fault-tolerant software is discussed with particular emphasis on fault

recovery.

•

-

!

J
f

I
I
)

f

i

I
I
I
I

<J +->
•r- c
4-> <u
ro E
E Q-
O 4-> -r-

••-> co 3
3 o cr

«a: >- UJ

to
0)

ro-
c
i-
a»

GO
U

*r—

4->
CO

1 O
o c
s- en <_> ro

CO

ai
-c
<J
ro
O
S_
a.
a.

<D
4-1
3
a.
E
o
o

GO
u •^

0) +J
s- CO
ro o
? c

+-> m
4- ro
O •^

oo a

s=
ai
s-,
s-
3
U

CO

CO

QJ

c •—'
I

3
CO

5£ -O

ai
u
c

4-> 0) ra
CO i- •*->
Ol OJ ro

r— <4- O
OJ

OS

HI 4->
r— 4->

re
Q.

CO
<u

o
ro
O
S-
Q.
a.
<

CO

i.

•4-»
C I
s-
3

•u a;
c s-
01 ro

•O 5
•t- 4->

</> <4- ^—
ai o c

en i/o o
•r—

•4-> +->
01 c TJ
J- (0 u
rO "O • r*-
3 c r—

•O 3 CL
s- -o 0)
ro a> ce
Z a: •—

I

ro ro en
E -O C
C c •>-
O 3 -O

»•- -o O
c uu

.— a: •—•

3

2. CONCURRENT BUILT-IN-TESTS

Requirements for the AN/UYK-41 and the AN/UYK-49 members of the

Military Computer Family (MCF) dictate the incorporation of built-in test

(BIT) techniques for fault detection and correction [1,2]. The prime

documents for the AN/UYK-41 and 49 specify that "BIT shall eliminate the

need for any support equipment to indicate faulty system operation. BIT

shall be incorporated to continually monitor system operation." The extent

to which BIT is utilized in these computers is not specified and will

presumably be left up to the implementation contractor. Conceivably, BIT

will vary from implementation to implementation and will be included only

to the extent needed to achieve the reliability goals stated which include

"upper test" mean time between failures (MTBF) targets between 10,000 and

100,000 hours) [1,2].

Key questions that arise are:

- At what level should BIT-detected errors be handled: user level,
operating system level, or hardware level?

- What mechanism should be used to report BIT-detected errors to
the software?

- What are the consequences and implications of "instruction
retry"?

The following section will address these issues and develop a

rationale for their solution.

In regard to the first question, handling all BIT-detected errors at

the user level is easily rejected. The user should not be bothered, or

even know, that the machine on which he operates is less than perfect. He

should not have to write his own BIT handlers; in general he does not have

the information for dealing with these errors nor the privilege level

required to deal with them. There are numerous other reasons why the user

should not be asked to deal with BIT-detected errors. These will not be

discussed.

1

Historically, BIT-detected errors have been handled by both the hardware

(instruction retry, error correcting codes) and the operating system (managing

bad blocks of memory). Unfortunately, this has not always been a cooperative

effort, which has led to the need for the new approaches proposed in this

report. There are advantages and disadvantages for BIT-detected error handling

in both the hardware and the software. In hardware, the error handler can be

designed to be a very specific, selfchecking piece of hardware with limited

access by other hardware elements [9]. This reduces the possibility of an error

in the handler itself. Software, by contrast, may use the same hardware each

time it executes. If the hardware is faulty, then the software execution may

fail. Hardware generally implements only one algorithm and may not take

advantage of much of the information available to it. Software is much more

flexible in that it can realize multiple algorithms based on the information

available.

Before discussing the level at which BIT-detected errors should be handled,

other issues must be raised. After answering these questions, we will have

presented information and ideas that can be used in discussing the "appropriate

level for handling BIT-detected errors."

Conceivably, any mechanism for reporting BIT-detected errors to software

should not violate the philosophy of the MCF architecture; rather, it should

exist within the framework of the architecture and, therefore, be an integral

part of it. Three distinct mechanisms for reporting exceptions and interrupts

already exist in the proposed MCF architecture. These are the software and

hardware exception facilities and the interrupt facility. Each facility is

different and each has its own advantages and disadvantages as a means of

communicating BIT-deterted errors.

The following discussion characterizes MCF exceptions and interrupts and

then addresses the reporting mechanisms.

I
I
i
I

]

D
a. Exceptions

There are two distinct types of exceptions, "software exceptions" and

"hardware exceptions." The software exception is an event caused by an error in

the currently executing software, such as an illegal address, a divide-by-zero,

(I

or a task failure. Because software exceptions have no latency; i.e., they will

not disappear with time, they need not be handled at top priority. The event

can sometimes be ignored, as with overflow or underflow; in other cases, it must

be handled to decide if the program should be aborted, as with invalid access

or illegal address. These events should not recur if the handler is "correctly

written." The manifestation of the event is selflocalizing.

(1) The Software Exception

A software exception is caused solely by the currently executing program

and its data. Such an exception could be repeated by simply re-executing a

certain segment of code in a specified environment. It is therefore logical for

these exceptions to be hand" }d entirely by the program units in which they

occur.

There are three major schemes for coping with software exceptions [10]:

signal, notify and escape. All three schemes are essentially similar and differ

only on the issue of postexception flow of control. The first two schemes

basically allow the program unit in which the exception occurs to resume

program control at the point at which the exception occurred. This philosophy

is evident in Mesa [11] and Alphard [12]. The third scheme requires local

termination (escape) upon detection of errors. This approach has been adopted

partially by certain dialects of Bliss (with the SIGNAL_ST0P construct) [13] and

completely by Ada [14], the latter of which enjoys the distinction of having the

MCF architecture as its host machine.

The Steelman [15] requirements for high-order programming languages used by

the Department of Defense specify that exception handling shall be of the

"escape" variety. Thi-s is basically a restrictive approach since it automati-

cally terminates the excepted program unit. It is not, however, nearly so

restrictive an approach as it first appears to be, because the caller of the

excepted program unit is at liberty to call that unit at a later time, if it

determines that conditions are more conducive to its successful elaboration

(e.g., pathological data have been eliminated, queueing delays have been

In this case "exception" does not necessarily mean "undesired event" but

r'ather "rarely occurring event."

6

PROCEDURE Gauss IS

TYPE Vector IS ARRAY (1 .. N) OF Real;

TYPE Matrix IS ARRAY (1 .. N) OF Vector;

solution: Vector;

M: Matrix; -- augmented coefficient matrix

Singular, IllConditioned: EXCEPTION;

PROCEDURE Process [M: Matrix] IS

.

overcome, and timeouts are no longer a hindrance).

Different types of exception mechanisms necessitate fairly different

programming styles; hopefully, "escape" or "bail-out" programming is the more

manageable and disciplined style of programming. Moreover, termination of the

offending program unit is a virtual necessity if formal program verification or

correctness techniques are to be employed [14]. This consideration applies to

optimization methods as well.

As a real-life paradigm for the type of exception handlinq discussed

above, consider the following procedure:

1
PROCEDURE Pivot [M: Matrix, n: Natural] IS

BEGIN

-- code to pivot the nth row of M

END Pivot;

PROCEDURE Triangularize [M: Matrix, n: Natural] IS

BEGIN

• „ C0(je to lower-triangularize M

-- arithmentic exceptions may be generated here

EXCEPTION

WHEN DivideByZero => RAISE Singular;

WHEN OverFlow => RAISE IllConditioned

END Triangularize;

PROCEDURE BackSubstitute [M: Matrix]

RETURN Vector IS

I

!

BEGIN

-- solve by substituting values

-- during the first back-substitution an arithmetic error

-- may be raised

EXCEPTION

WHEN DivideByZero => RAISE Singular

END BackSubstitute;

BEGIN — Process

FOR n IN 1 .. N-l LOOP

Pivot(M, n);

Triangularize(M, n);

END LOOP;

solution := BackSubstitute(M);

EXCEPTION

WHEN Singular => Print("The system has no unique solution");

WHEN 111-Conditioned => Print("The system is

ill-conditioned");

END Process;

BEGIN — Gauss

more: String := "Yes";

WHILE more = "Yes" LOOP

Print("Enter the augmented coefficient matrix.");

Read(M);

Print("More?");

Read(more);

END LOOP;

END Gauss;

The Gauss procedure implements the Gaussian elimination algorithm by

repeatedly pivoting the rows of the augmented coefficient matrix of a system of

N simultaneous linear equations in N unknowns. The Pivot and Triangularize

procedures perform the required elementary row operations on the augmented

coefficient matrix, and if the divide-by-zero exception is generated, then the

program knows that the pivot element must have been equal to zero, in which

8

!

ri

i
case the system is singular. If an overflow exception is generated, then one of

the entries of the augmented coefficient matrix is large enough to cause the

matrix to have a large condition number (i.e., the system is illconditioned).

Exception handling of this sort is not foolproof, nor is it magic, since any

number of exceptions may be generated during the execution of a segment of code.

However, it does go a long way toward helping a programmer cope with the

bizarre, the less-than-mundane, and the novel.

'i

I

. (2) The Hardware Exception

The second exception type is the hardware exception. This event is caused

by the hardware. It is not directly related to the software exercising the

hardware, e.g., parity, power-fail, BIT. It is characterized by requiring quick

handling so as to reduce or limit any data corruption. The event can not be

ignored and may recur while executing its handler. The event needs to be

localized to the least replaceable unit (LRU) in which the event occurred (not

necessarily manifested) for maintenance purposes. It is vitally important that

hardware exceptions be tended expeditiously (usually by some specially written
trap handler). Barring any further complications, the flow of control should

revert back to the point in the program unit at which the exception occurred.

This is an explicitly stated, absolute criterion that should be met by the MCF

architecture [16] that states, "It must be possible to write a trap handler that

is capable of executing a procedure to respond to any trap condition and then

resume operation of the program." This presents some special difficulties for

architectures (such as the MCF's) that allow instructions to be interrupted in

midexecution. It would be desirable to resume the instruction's execution

precisely (or as close as possible) where it was cut off. There are critical

issues to address with respect to this problem; these are considered below.

These definitions of software exception and hardware exception differ from

the definition of exception in the prime item reports and MIL-STD-1862. They

are defined in this manner to draw a closer distinction between the MCF idea of

exceptions and BIT-type exceptions.

H

I

b. Interrupts

Interrupts are asynchronous events generated externally or independently of

the executing instruction. They are used to inform the systeir that some

specific action has happened or is about to happen. These events characteristi-

cally require rapid handling, due in part to data latency. An interrupt can be

ignored if it lacks sufficient priority to receive attention

deferred until its priority is high enough to insure some a

Table 1 lists the characteristics of software exception - drdware excep-

tions, and interrupts. Some of these characteristics are discus;

MIL-STD-1862. Those that are not discussed in the MCF document <

the following section. Some of the other characteristics are also m

this section.

c. Exception and Interrupt Facilities

MIL-STD-1862 does not explicitly define an exception. InsU

"Program errors are handled by the exception facility," and "... ar

may be raised by RAISE or ERET instructions, or by the detection of an

condition by the hardware." The phrase, "... or by the detection of an

condition by the hardware," implies that BIT-detected errors are handled by I

exception facility. However, some events (such as parity or power-fail) that

are defined as interrupts or use the interrupt facility in MIL-STD-1862 clearly

fall in the area of hardware exceptions. Based on MIL-STD-1862 as it now stands

and prime item reports [1,2,17], BIT exception handling is spread over two

separate and distinct facilities. RTI feels that this is not what was intended

by the specifications. The MIL-STD-1862 phrase in question could better read,

"... or by the detection of range or domain violations by tire hardware." This

phrase would then specifically refer to signals such as carry, underflow,

overflow, truncate or divide-by-zero. In the following paragraphs RTI will

discuss why only one dedicated facility should be used for handling BIT detected

errors.

Three different mechanisms are used to communicate to exception and

interrupt handlers when an interrupt or exception occurs. Exceptions use two of

these mechanisms: (1) passing the exception code to the locally defined excep-

tion handler or (2) a parameterized call to the supervisor exception handler.

The third mechanism is the interrupt and trap facility.

10

Table 1. Characterization of Software Exceptions,
Hardware Exceptions and Interrupts from
MIL-STD-1862.

CHARACTERISTIC SOFTWARE EXCEPTIONS HARDWARE EXCEPTIONS INTERRUPTS

Asynchronous or
synchronous with
respect to program
execution Synchronous Asynchronous Asynchronous

Data latency
problem No No Yes

Data corruption No Yes No

Need Immediate
attention Yes Yes Not always

State Information
need to be saved? No Not discussed Not discussed

Priorities
required? No Yes Yes

Instruction retry No No Yes

Maskable Yes No Yes

1

11

I

I
I
I
I

(1) Procedure-associated Exception Facility

Local exception handlers are segments of code within a procedure with

which the handler is associated. The actual association is made at

procedure entry by setting the "exception handler specified" bit of the

entry header or by executing an EXCEPT instruction which provides the

address of a code segment which is invoked if an exception is raised.

These handlers are not procedures but segments of code to which the program

branches if an exception is signalled.

The only information available to these local handlers about the

exception is the exception code generated by the exception. There is no

capability nor information that allows these handlers to return to the

location at which the exception is raised; thus local exceptions are

terminal exceptions for the procedure with which they are associated.

(2) Supervisor Exception Facility

The other exception handler is the supervisor exception handler, which

is permanently associated with every task. Whether the supervisor

exception or local exception handler is invoked is determined by the

up/down level exception (UDLE) bit in the processor status word (PSW) of

the machine. This handler is invoked like a procedure call and thus has

its own execution frame. It is also invoked as a privileged task on the

kernel context stack. The information passed to the supervisor exception

handler is the exception code, the address at the beginning of the

instruction that was executing, and the program counter of the context

which invoked the supervisor exception handler.

The supervisor exception handler was designed to work in the debugging

environment, not to be a part of the debugged system [18]. The only other

time the supervisor exception handler is invoked is when an exception has

propagated to the base of an execution frame. It is then invoked with a

task failure exception, not with the exception that was raised in the base

context. In this case it is invoked with the task failure exception to act

as a buffer between the task with a task failure and the task that spawned

the failed task. In this way no exception is passed to the spawner.

Recall that in the MCF architecture exceptions handled by the local handler

12

]

eventually cause the termination of the context in which they are raised. So

the spawner's context that handled this exception would have to terminate, were

it not for the buffer zone provided by the supervisor exception handler.

(3) Interrupt Facility

The interrupt and trap facility is treated as a parameterized call with the

address of the handler held in a vector. The parameters for each entry are

defined by the MCF architecture. The vector and implicit priority are also

defined by the MCF architecture. When an .interrupt occurs, the priority of the

interrupt is checked against the priority of the executing task. If the

interrupts priority is higher than the executing task's priority, the interrupt

takes effect immediately. A new context is built with the address in the vector

location used as the address of the interrupt handler's entry point.

The interrupt facility has several advantages as a BIT-detected error

handler. The correct handler is immediately invoked upon receipt of a

BIT-detected error. The necessary information can be passed as parameters to

the handler routine, and these need only be defined in the architecture.

BIT-detected errors can be grouped according to levels of severity, with the

most severe errors invoking a hardware routine similar to power-fail to save the

status of the machine. The handler is a procedure; thus it can be exited, and,

with proper programming, the instruction where the error occurred can be resumed

or restarted.

Comparing the needs of the hardware exception handler with the characteris-

tics of the interrupt facility, one can see that they fairly well match each

other in terms of needs and abilities.

The MCF architecture currently recognizes that parity errors and power-fail

are best serviced by the interrupt facility. It should be obvious from the

above discussion that the remaining hardware exceptions should use the same

mechanism.

i

13

I
I

d. Retry

The third question regarding concurrent built-in-tests concerns the

implications of "instruction retry." The capability to retry an instruction

(this includes resuming an instruction) has historically been a hardware

capability invisible to the programmer. This section discusses the problems and

differences of retry after hardware exceptions and interrupts. This discussion

is basically the hardware view of instruction retry. The final subsection

discusses different instructions that can be used to explicitly control retry

from the software level. This approach is based on the idea that if a

BIT-detected error is handled in software and results in the operation being

corrected, then a posible alternative is to retry the "interrupted

instruction."

"Interrupted instruction" will be used a great deal in the following

paragraphs. It should be understood to include the occurrence of an interrupt

and also the occurrence of a hardware exception. It does not include software

exceptions.

(1) Returning from Hardware Exceptions

Many BIT-detected errors are manifestations of transient faults. As

circuit density increases, the percentage of transient faults to overall faults

will increase, e.g., as a result of substrate-generated alpha particles.

Because so many of these errors are due to transients, the idea of a retry

capability appears attractive [19, 20, 21].

In an earlier MCF report [16], the retry capability was listed as a

desirable asset. In the MCF architecture, the appropriate granularity for

specifying retry is at the instruction level. To specify retry at the

instruction level, the address of the beginning of the interrupted instruction

must be available.

There is a problem with this approach -- what if the BIT-detected error

occurs while in the instruction execution cycle? Retrying the instruction could

produce erroneous results if some information in program visible storage were

altered while executing, e.g., if a partial block move or edit were performed.

Since the ability to resume &n instruction is desired, all possible BIT-detected

/*

14
j

L

1

errors need to have manifested themselves before a change is made to the program

visible storage in each iteration of the execution cycle. If this is possible,

the machine can resume execution at the point following the last change to the

program visible storage, assuming that the state at that point is saved or can

be reconstructed [18]. As an aid to understanding the following paragraphs, a

model of the instruction cycle is provided in Figure 2. An example to

illustrate the concepts of "retrying" and "resuming" follows.

In the figure, an instruction, move block (MOVBLK), is being executed. The

machine is in the operand evaluation cycle and a BIT-detected error occurs.

Based on information available about the state of the interrupted instruction,

the handler decides to retry this instruction. The handler issues a RETRY

instruction and supplies the address of the instruction to be retried. Since

instruction fetch and operand evaluation have no side effects other than

incrementing the program counter (PC), RETRY can be done without saving any more

information than the address of the beginning of the current instruct'on. This

value is defined in the ISP of the MCF architecture as old.PC, see Appendix A,

and it is passed as a parameter to the supervisor exception handler. This is to

indicate the availability of this datum in the current specification of the MCF

architecture.

In an instruction such as the MOVBLK the microcode that implements the

execution cycle is generally executed as a loop, with the loop control as the

count parameter of the instruction and the body of the loop as an execution

phase. To RESUME an execution cycle, the internal state of the machine must be

preserved or reconstructed every time the execution phase loop is executed.

This internal state can include the opcode (points to the microcode), current

address of the source and destination, and the current count of the loop. The

information saved and the amount saved is necessarily implementation dependent.

A discussion of where this information could be saved will be deferred until

later.

(2) Returning from Interrupts

Another issue that pertains to the above discussion of retry and resume is

the interruptability of instructions. Several instructions are stated to be

15

Instruction:
MOVBLK #5,Source,Destination

CYCLE ACTION

Opcode Fetch IR<-M0VBLK

Operand Evaluation

Phase 1

Phase 2

Phase 3

0Pl<-#5

0P2<-Source
0P3<-Destination

Execution

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Source—>Desti nation

Source+1—>Destination+1

Source+2—>Destination+2

Source+3-->Destination+3

Source+4-->Destination+4

Fig. 2. Cycles and Phases in Instruction Interpretation.

16

i

interruptable (string instructions). If they are interruptable, how are they

restarted? Again, this is the idea of resuming an instruction. The explicit

specification that an instruction is interruptable implies that the instruction

cycle is interruptable and thus can be retried or resumed. Is the capability to

retry or resir«* an explicit machine instruction fully understood by the

programmer as to its requirements, drawbacks, and side effects, or is the

capability "hidden" from the programmer in such a way that he does not know that

he is returning to an instruction that will be resumed or retried? MIL-STD-1862

does not answer any of these questions explicitly, so it is a fair assumption

that the capability to resume, at least, is a hidden capability.

What does this mean? It should not be concluded that interrupts and

BIT-detected errors are one and the same. A BIT detected error means that

something incorrect has happened and if the current instruction runs to

completion a possibility exists that incorrect data will be stored in the

program visible storage. On .the other hand, an interrupt is an event that says

something needs attention, but can way wait for the current instruction to go to

completion. Some instructions are interruptable because they can operate on as

many as 2**32 bytes of memory with one instruction. To complete the distinction

between these two items, an interruptable instruction is one in which the

execution cycle can be suspended once a certain "point" (the end of a phase) in

the instruction cycle is reached. The internal state saved is the state after

completing the current phase of the execution cycle. A BIT-detected error says:

"Stop what you are currently doing and save as internal state the internal state

as of the last change to program visible storage." Internal state refers to

memory elements in the machine which are not programmer visible but define the

status of the machine at any phase in the instruction cycle. If the machine is

in the execution cycle, phase N, an interrupt will complete the execution of N

and save the state in order to resume in phase N+l, while a BIT-detected error

will abort phase N and save the state of phase N in order to to restart phase N,

as shown in Figure 3.

(3) Returning from Software Exceptions

The software exception is the third type of undesired event that may

r

I
I

N-2 I N-l I

BIT detected error
acknowledged.

State of phase N saved.
Execution of phase N aborted.

Event
Posted

J (1
I N+l I
J L

N+2

Interrupt acknowledged.
State of N+l saved.
Execution of phase N completed.

Fig. 3(a). Multiphase Execution Cycle.

t
Phase N

Start of phase N

All possible BIT
detected errors must
be signaled by here

I I

State updated to
phase N+l

Program visible
storage change

Fig. 3(b). Actions in a Phase.

18

<mmmm

LL,

impinge directly on instruction resumption. The MCF instruction set is a

sophisticated procedure-based language with exception handling capabilities. As

such, we must carefully consider the semantics of program resumption, abortion,

and retry after the handling of BIT detected errors. The two major questions in

software exception handling are:

1) Who handles the exception once it has been generated?

2) What happens to the overall program after the exception has been

handled?

The fi-"st question engenders a number of other questions: should the handler be

statically or dynamically specified, where is the exception handler specified,

is there a hierarchy for handling exceptions, etc.? To answer the second

major question, one must first consider how the program returns from the

exception handler. Does the excepted program un.it terminate, skip, resume, or

retry, etc.? Furthermore, one must consider how these problems can be solved by

the MCF architecture.

"Exception" will generally be used to refer to the detection of a condition

which merits special attention. The terms "exception," "condition," and

"signal" are often used synonomously. Software exceptions may occur at any

point in the execution of a program; they may be defined by the programmer or

predefined by the system (e.g., overflow conditions, divide-by-zero, etc.).

When an exception occurs within a program unit (e.g., procedure, block, loop),

the unit is said to be excepted or is said to signal the exception (presumably

to other program units). The excepted unit is sometimes called the offending

unit or the signaler. Sometimes the excepted unit is said to raise the

exception, but here terminology is not always consistent (cf. [11], [6], [22]).

At the time the program unit is excepted, some handler must take control (i.e.,

the handler is invoked). An exception handler can best be described as

instructions which the programmer intends to be executed whenever a certain

excrption is signaled. A handler is simply a sequence of instruction

statements, but different programming languages (if the language implements

exception handling) have different syntactical and semantic rules for their

19

I
I
I
I
I
I

I
I
I

handlers. For instance, one language may think of an exception handler as a

statically defined trap routine which is executed and returned from when the

exception is signaled, while another language associates an exception handler

with a procedure-like entity which is dynamically determined at run time. Once

the handler-is invoked by the exception and its context (e.g., the excepted

program unit), it is executed as a normal sequence of instruction statements.

After the handler's execution is completed, control will return to some point

determined by the semantics of the language's exception handling facility. In

the general model of exception handling it is assumed that a procedure-based

language is used. "Procedure" is used to mean program text that can be

activated by reference to the unique name associated with the procedure. Thus

machine language is discussed as well as high-order language. A procedure P is

activated by procedure Q's call to P. (A procedure is allowed to call itself.)

The call relationship which exists at a given point in a program's execution

implicitly defines the program's activation record or procedure stack.

Disciplined programming practices require that each procedure be seen as the

implementation of an abstraction (e.g., a mathematical function), preferably

with associated documentation or functional specification of the implemented

abstraction. An important principle in procedure-based languages is the

principle of information hiding: a program calling another program only

requires knowlege of the callee's abstraction (essentially its input/output

relationship) and needs to know nothing of the callee's implementation details.

Now that the basic exception handling model has been addressed, the

previously raised question of who shall handle a signaled exception can be

discussed. First, it must be clear how we specify an exception handler. There

are three ways to do so:

(1) The handler can be specified as completely static: each time the

exception E is signaled, the handler H(E) is executed. This is

equivalent to writing a trap handler for a condition.

(2) A handler is associated with each procedure-exception pair [6]. Here

the occurence of a given exception E in procedure P can be handled by

H(E,P), but the occurence of E in procedure Q might be handled entirely

differently by handler H(E,Q).

20

.

21

•

(3) The second alternative may be extended by allowing a procedure call

(not just the procedure body) to have an exception handler associated

with it. Thus, if Pl,...,Pn are the various calls made to procedure P

in a program, handler:; H(E,P1),... ,H(E,Pn) may be available to

handle E.

Throughout the above discussion we are assuming that we are limited to

binding the various handlers for a specific exception to elements of the

program's activation record. Reference [12] shows such am assumption to be

unnecessary, but we will restrict ourselves to this nonetheless. In general,

static exception handlers have limited power, so this report will consider

exception handling models that employ a dynamic binding of the exception handler

with a combination of the exception and the exception's context.

Given that an exception handler for exception E is program text which is

somehow associated with the various procedures of a program, there is still the

problem of how to decide which of the handlers for E (and in general there may

be several) will be initiated when an excepted procedure signals E. The

procedure whose associated handler handles a signaled exception will be called

the catcher of the exception.

First, let us review some of the current methods actual programming

languages use to bind exception handlers to procedures. The MCF architecture

specifies that every procedure has the option of specifying an exception

handler. The same is also true of the language Ada [14]. In both cases the

exception is program text which is appended to the end of the procedure's body.

Generally, when an exception E is signaled in procedure P, the associated

handler H(P) examines the value E and, depending on the value, transfers control

to the appropriate section of H(P) (thus one writes H(P,E)). The idea in both

the MCF architecture and Ada is that when procedure P signals exception E,

control is diverted immediately to the handler H(P,E); in other words, the

catcher and the signaler are the same.

The CLU language also associates handlers with procedures by including the

handler at the end of the pro edure body. Unlike the MCF architecture and Ada,

however, the catcher is the procedure which called the signaler. So, if

procedure P calls procedure Q which later signals exception E, the resulting

action transfers control to H(P,E), the handler for E in P.

L.

I

Mesa is by far the most liberal language with respect to exception

handlers. Mesa's handlers may be associated either with a procedure (the

handler is included at the start of the procedure body by the ENABLE clause) or

with a specific call to a procedure (via a catch phrase). Conventional scope

rules determine which handler is employed (e.g., an ENABLEd handler takes

precedence over one specified by a catch phrase). In the Mesa scheme, if

procedure P signals exception E, either P's handler for E or P's call's handler

for E assumes control.

In all of these languages except CLU, the signaled exception may not be

caught by the caller of the signaler, in which case the signal is simply

propagated further up the call stack. Appealing to the principle that only the

caller of a signaler should know that the signaler has signaled an exception,

CLU has taken the unique position that an exception may be propagated from

signaler to caller, but no further. Otherwise, if a procedure handled

exceptions that originated deep in the bowels of other procedures it had called,

this would imply a knowledge of the implementation of the callees on the part of

the caller. Given all these different mechanisms for defining exception
handlers, it may be advisable to have an architecture which is adaptable to

these various mechanisms. With minor modification the MCF architecture can

directly support the binding and control transfer mechanisms discussed above.

The question of where to go after the exception has been handled is still

open. The MCF architecture, Ada, and CLU all agree that after the exception

handler has executed its last instruction statement, the signaling procedure

must terminate. The program then resumes at the point following the call to the

signaler. This approach is taken on the grounds that the called procedure

should not depend on the actions of its caller, once the call has been initiated

— the called signaler's resuming after the calling catcher's handling of the

exception would violate this. Mesa allows the signaler to be terminated, to

RETRY the signaler by recalling it, to RESUME at the point in the signaler where

the execution was signaled or to CONTINUE at the instruction following the

signal. Whether the last mechanism can be implemented directly in the MCF

architecture without significant modifications is not clear. However, it could

be supported by the MCF architecture at the cost of additional overhead (e.g.,

22

by including a runtime procedure Signaler which passes the signal to each

handler in its turn).

.

(4) Saving the Interrupted State

Retrying an instruction from hardware or software requires that a

certain amount of state information be saved on acknowledgement of an

interrupt/BIT- detected error [18]. How mu:h information needs to be saved

is necessarily implementation dependent? A method for determining if the

previous context was in a "retryable" state is presented.

There are currently two bits available in the PSW where state

information can be stored, bits 2 and 3. If this is the maximum number of

bits available, only four states can be encoded. How is the instruction

cycle broken up into representable segments by these two bits? Basically,

resuming an instruction can occur anywhere in the instruction cycle as long

as sufficient information is saved which can represent the "point" in the

instruction cycle uniquely. Depending on the "point" this can be an

excessive amount of information to save. Logical points, where an

instruction can be interrupted, are after each operand is evaluated or

after each execution phase. For interrupts this entails completing the

operand evaluation or execution phase and saving the state beginning at the

next "logical point." For BIT-detected errors the current activity is

aborted and the state variables for this control point are saved. In this

report we have mainly referred to resuming if the event occurred in the

execution cycle, because program visible storage may already have been

changed in prior execution phases. Resuming after an event can easily

encompass operand evaluation. However, throughout this report we will

assume that one resumes from an event in the execution cycle or retries an

event in the instruction fetch or operand evaluation cycle. An example

encoding of the PSW bits follow:

00 - indicates a "normal" state. This means that the "calling"
procedure was not "interrupted" while in an instruction cycle.

01 - indicates a "retryable" state. The procedure was "interrupted"
while in either the instruction fetch or the operand evaluation
cycle.

23

10 - indicates a "resumable" state. The procedure was "interrupted"
while in the execution cycle of an instruction and the "internal
state" of the machine at that time is saved.

11 - reserved, could also indicate that an incomplete save was done,
and so resumption would be dangerous.

These bits would be set by an interrupt signal or BIT signal.

The current thinking is that the "internal state" and the state of the

interrupted instruction should be saved in the context of the handler. It

is conceptually cleaner to save this information in the context of the

inte jpted instruction but on the surface it appears to be unwieldy for

the hardware. Why? Any instructions in the handler that may wish to

interrogate the status bits or the internal state could only do so with

great difficulty. If the internal state were saved in the interrupted

context, either a separate piece of "hardware" or a revamping of the

current hardware would be necessary to remove this internal state and keep

the context pointer in order.

(5) Software Retry

This section discusses three approaches to explicitly control resuming

or retrying an instruction from the instruction level. If a BIT error

handler is to identify an error, isolate the faulty module, and continue

computing, there must be some way for the error handler to allow computing

to resume at the point where it was interrupted. By the same token, the

same capability to resume computing is necessary to return from an

interrupt handler.

Let us consider the capability to explicitly retry or resume an

instruction. RETRY requires the address of the interrupted instruction.

The address can be passed as a parameter at handler invocation time. The

instruction should be privileged, and the address should not be explicitly

stated as an operand. Instead, it should be an implied operand, such as

:i.

24

mmmmam

"normal," CONTINUE operates like the RETURN. The diffeience between this

approach and the second approach is that CONTINUE can be made privileged, which

removes it from the purview of the nonprivileged user. There would also be no

way in which the state bits could be modified from "resumable" to "retryable".

There are a few more instructions that could' be useful in supplementing the

previous approaches. In one of these the state of the interrupted context is

tested. This instruction would then set the condition code bits. For example,

a "normal" state could clear all the bits, a "retryable" state could set the "N"

bit, and a "resumable" state could set the "Z" bit.

Wuerges and Parnas [23] have advocated three instructions for use in

undesired event handling. Undesired events map into our classification of

"hardware" and "software" exceptions and interrupts. Two of their proposed

instructions, RETRY and CONTINUE, are basically equivalent to RETRY and RESUME.

Wuerges' third instruction, CLEAR, ignores the "interrupted instruction" and

starts interpreting the next instruction in sequence. The instruction, more

importantly, resets the program visible memory to its value at the beginning of

the "interrupted instruction." This is impractical if a CLEAR is executed on an

interrupted MOVBLK instruction which was halfway through moving a page of

memory. In its place we would propose an ABORT instruction which would

discontinue the interpreting of the "interrupted instruction" and would begin

interpreting the following instruction. But, the program visible memory would

not be reset. The programmer should be aware that ABORTing in the "resumable"

state does not undo the changes of the earlier execution phases in the execution

cycle.

25

e. Level For Action

The previous sections discussed why a retry capability is needed in the MCF

architecture, and presented a brief explanation of hardware and software retry.

Regarding which level—hardware or software—is better for retry, RTI proposes a

combination of the two levels in order to take full advantage of the inherent

strengths of each level. Presented below is a scenario that incorporates

hardware and software in a integrated system for dealing with BIT-detected

errors.

LL

Upon receipt of a BIT-detected error, the hardware saves the machine's

state variables and attempts a retry. If it succeeds, the error is considered a

"soft error" and processing continues in the normal fashion. If the hardware

retry fails, it tries again several more times. If all attempts fail, the BIT-

detected error is considered a "hard error" and the error is passed to the

software handler. At this point software, in the guise of the error handler, is

invoked and not before. If the software can "fix" the problem it can retry the

"interrupted instruction" and continue task execution. Figure 4 presents a

block diagram describing the actions taken in the event of a BIT-detected

error.

Instruction retry is a hardware capability which is shared at the instruc-

tion level with the programmer via some of the previously mentioned instruc-

tions. While the capability to retry exists at the instruction level, it can

not be properly invoked if the state of the previous (interrupted) context does

not reflect a retryable state. This state can only be set by the hardware when

it raises a BIT-detected error or an interrupt is received. The state indicator

can only be cleared by the hardware when it executes one of the retry-type

instructions. The handler is invoked in the same manner as a procedure, but the

parameters saved in its context are specified by the architecture. The state

variables of the interrupted context are saved in some appropriate fashion so

that they can be restored.

The software handler can implement several algorithms and use the

appropriate algorithm, depending upon the information it garnered while

analyzing the machine. Upon receipt of a BIT-detected error the hardware does

an automatic retry, if this fails, it can continue issuing retries for a

specified number of times. Because transient errors often appear in bursts [24]

it may take multiple attempts before the transients disappear. Ng and Avizienis

[25] suggest that the hardware scheme have some built-in delays in order to

"wait out" the error burst. Ng and Avizienis [25], Sedmak [19] and Carter [26]

also strongly suggest a multilevel recovery strategy that involves more than

just an instruction retry. Every retry attempt is automatically logged. If the

hardware retry fails, the appropriate software handler is invoked based on the

"error code/address." In the case of a severe error, on the same level of

magnitude with a power fail, the hardware could do a series of retries; if that

failed, the hardware would try to gracefully close down.

26 i

Retry delay

Fault Detected

Error code stored in

- Error register

- Error log
- Console

Save state variables

Set console
failure
light

System
wait

Start Retry

Fault\ No
«detected?.

Clear

Error register

Console

Log intermittent

Error code stored

No

Continue
Processing

Invoke
Software
Handler

Fig. 4. Recovery Block Diagram.

27

L.

The point can be raised that the hardware part of the process could be done

entirely in software, but there are many important advantages to allowing a

purely hardware approach to the problem. For example, the extra control

overhead needed to do the series of retries in hardware is a small fraction of

the retry hardware that will be required. The hardware can be a separate piece

of selfchecking hardware that can be isolated to a large extent from the rest of

the hardware [9]. The time, difficulty, and space requirements required by a

purely software approach is very large compared to the small hardware overhead

required.

This proposed recovery process is a total package which makes efficient use

of the different strengths at each level. An extension of this strategy to yet

another level will be discussed in the following section under fault tolerant

software. This is the idea of doing rollback-and-recovery. Interrupt recovery

is easily accommodated in^o this recovery process by simply bypassing the

hardware level retry efforts.

28

J_

I

3. NONCONCURRENT BUILT-IN-TESTS

Whereas concurrent BIT is predominantly implemented in hardware, nonconcur-

rent 8IT relies almost entirely on software and firmware for its implementation.

As in any well structured program nonconcurrent, software-based BIT is useful

because it is modular, portable, modifiable, maintainable, easy to understand,

and properly designed for human interface. The inherent weakness of software-

based BIT, of course, is that it depends on the very medium which it intends to

test. However, experience has shown that intelligently designed software-based

BIT can be invaluable to the success of a computing system design.

Consider a computing system based on the Indy 500 principle. In this

scenario the overall computing system is comparable to the race. The operating

system includes the operating system and applications programs, the architec-

ture, and the machine implementation. The driver is the low level monitor of

his race car's health and performance; he exercises a great deal of control over

the decisions which govern how the race is to be run. He is directly in touch

with his machine via the instrument panel and the feel of the car, and the

decision to continue a lap or pull into the pits when the oil pressure is

abnormally high is entirely his. Just as the driver presumably has the ability

to make the correct judgement in matters concerning his racecar, there is a

sound strategy or algorithm the computing system can use to monitor system

behavior and act appropriately. One simplistic algorithm is to abort whenever a

malfunction occurs, which is analagous to stopping the car and being towed into

the pits whenever the engine temperature exceeds the limit. Other more

sophisticated and practical techniques are clearly possible. In the event of

any anomaly, the driver should be able to complete the race or at least get his

car into the pits. This is the least to be expected of the low-level, first

echelon BIT (i.e., concurrent BIT). It is generally catastrophic if a program

is oblivious of recent hardware faults and continuous execution -- if the driver

is aware of a malfunction, but continues the race and the engine blows at

29

L

170 mph -- the driver kills himself, four other drivers, the NBC camera crew,

and eleven spectators. Having coasted into the pits, the driver can give

control of the car to the pit crew, who can quickly diagnose and repair the

faulty car. Just as the pit crew is amazingly efficient, so is the

software-based BIT. Sometimes pit crews can not make the necessary repairs,

either because the malfunction is serious or there is insufficient time. In

this case the racing team has to throw in the towel. By the same token,

software diagnostics will occasionally have to simply terminate and signal that

external tests and repair are necessary to revive the system.

Once an executing program has been interrupted by some undesired event,

what happens? As previously discussed, an interrupt-like signal is generated

and termination is suspended. Depending on the information communicated by the

interrupt, vectoring to some location occurs and a handler is invoked. The

handler is conceived to be a system-level program which runs on the kernel

context stack and enjoys certain powerful privileges.

The handler should be part of a larger diagnostic task. This diagnostic

task could be broken down into a system exerciser (SysEx) and system files for

the purpose of error logging. The SysEx is logically composed of and exercises

control over subroutines which would exercise specific modules of the system

(e.g., memory, CPU, ALU). These module exercisers could of course be further

decomposed into submodule exercisers which would target specific subsets of the

modules components (e.g., relatively device-dependent items such as boards, ICs,

or register sets). The diagnostic error logs are vital records of the system's

behavior. They might comprise a pseudo data base which could be written by the

SysEx whenever errors occurred. Organization of the error logs by attributes

such as module of occurrence, date of occurrence, frequency of occurrence, and

threshholds for errors would be a highly desirable feature. Thus the SysEx

could consult the error logs and base its decisions on information provided by

the logs [27].

Any handler would be invoked with enough information to enable it to beqin

locating and containing the fault. This information might be as specific as the

address of a failing byte, or as simple as a message that something is amiss.

•

30

I

cc

Ed
I—
<•> >-
in

w
in
u
Ul
X
UJ

to
O

O)

T3

re

£
O

on

s.
o

(0
IM

o

CL
o

•

CD

31

There would also be a priority associated with each interrupt. The handler

would use the passed information and the associated priority to determine how to

localize the fault. The handler would in turn call the module exerciser(s)

which it has decided is appropriate. It would pass the module exerciser any

information it considered relevant The module and submodule exercisers might

test their corresponding hardware components indefinitely (i.e., terminated by

some external condition), for a specific number of repetitions, or just once.

These exercisers would undoubtedly check to see that data paths were open,

verify that the component's input/output relationships remained invariant, and

examine the integrity of the component's associated test patterns. The module

exercisers could then return values to indicate the state of their associated

hardware modules. The handler could call any number of module exercisers any

number of times. Results of these tests would be simultaneously logged in "-.he

error logs. The operating system would have the results of the SysEx made

available to it, thus offering it the opportunity to avoid usage of faulty

modules and/or use surrogate modules as replacements for the faulty ones after

notifying the user of this reconfiguration.

The SysEx concept would require the expansion of the MCF instruction set to

accomodate some specific instructions for testing. The following paragraphs

discuss several different instructions that could be used by the SysEx.

a. Test Instructions

The first instruction is a simple, module-level test instruction, TEST

"module#," where "module*" is the unique address of some specific module.

Module here can mean an LRU or some subelement of an LRU. The module r.umber is

the same number returned by BIT when an error is detected. When TEST -s issued

a set of test patterns are "read" into the unit under test (IJUT) and tne results

are compared to a standard. If the UUT fails a pattern, it indicates this in

some manner. Of course, BIT must be disabled so it will not interfere with the

testing.

The following example presents a mechanism that can be used to indicate the

success or failure of a test pattern and logically incorporates a test of BIT

for false alarms. Each pattern is given a number "i"; if the pattern fails,

(does not correctly compare), bit "i" is set in a syndrome register, the

contents of which are automatically logged at the conclusion of the instruction.

32

I
I
I

The output of the comparer and the output of BIT are ANDed together to indicate

whether the test pattern caused a failure (see Figure 6).

Comparer BIT

 H H

PASS PASS

PASS FAIL

FAIL PASS

FAIL FAIL

Syndrome

PASS

FAIL

FAIL

FAIL

Comparer AND BIT = Syndrome

In a better method, a bit is set in a BIT syndrome register and BIT sets bit

"i", depending on its state, after executing each test pattern "i". This

information is then used with the syndrome register to indicate whether a "false

alarm" has been raised, if the comparer is in error, or if the indicated test

pattern passed/failed (see Figure 7). This added information does require more

decision making. For instance, if the comparer and BIT disagree, who is in

error? This quandary can be reduced somewhat by making the test circuitry

hardcore using self-testing methods [9]. Any errors in this mechanism which are

detected by the self-testing mechanism would raise a high priority BIT error.

The second test instruction works like the first, except it is based on the

premise that the machine is implemented as a series of concentric layers

surrounding a core. This is the same idea as a protected kernel of an operating

system. The core of the machine can be implemented in hardware and the other

layers can be implemented in software. As the need for speed increases, the

software layers can 6e replaced by hardware versions, until the whole system is

implemented in hardware.

33

Syndrome Register

Test
Pattern

<~ AND

PASS

.Standard COMPARER

MODULE
UNDER
TEST

PASS,

FAIL

BIT Signal

BIT

FAIL

COMPARER
.Standard

Fig. 6. Syndrome Register for Module.

34

Module Syndrome Register

Test
Pattern

BIT Syndrome Register

-

Standard
COMPARER

BIT Signal

,,

MODULE

BIT

• i innen
TEST

COMPARER • Standard

L
I

Fig. 7. Syndrome Registers for BIT and Module.

35

"«•*
I

I

•

This approach could be extended all the way to microcoding parts of the

operating system. Each concentric layer j requires the innermost concentric

layers, 0 to j-1, to be correctly functioning before it can function. Checks

are performed on all information leaving or entering a concentric layer (this is

the idea of "mutual suspicion" in software [28, 29]). The BIT error number

represents the concentric layer at which the error was manifested. The

advantaqe of this scheme is that all functions based in the concentric layer j

and greater would be considered in error if BIT returned j as the error number.

The test program invoked by a BIT signal could then test layer j and beyond,

knowing that the test program was written using functions defined in layers 0

through j-1. If the machine's functions were cross-referenced aganist the

concentric layers, then all functions in these 'ayers could be marked "disabled"

-- DISABLE "layer#." In the case of instructions, one could then make use of

the OPEX facility and execute any "disabled" instructions by their software

equivalent. (The OPEX facility (unimplemented opcodes) is a vectoring facility

which is used if opcodes are executed that are not implemented in the machine.)

When the layer in error is replaced, the machine could "re-enable," CLEAR

"layer#" as well as the "disabled" instructions, and then continue processing.

One of the original ideas behind the OPEX facility was to permit an implementa-

tion of a minimal subset of the instruction set in hardware and use OPEX to trap

unimplemented opcodes to software versions, thus reducinq the microcode of the

implementation considerably. This could well be used for a set of decimal-

oriented instructions that are infrequently used on a more scientifically

oriented implementation.

In nonconcentric machines a module can be used for various functions. If

the module fails and a BIT signal is raised, it is possible for the program

invoked by the BIT signal to use a function that requires this module. The use

of a concencric machine is in itself a means to help isolate errors and prevent

the propagation of corrupted data to other sections of the machine. The

nonconcentric machine can also take advantage of the OPEX facility if the faulty

function cai. be effectively isolated from further use. A cross-reference table

of modules against functions would be required. This table could be very

36

complex and unwieldy if the implementation is not carefully thought through with

error isolation in mind. DISABLE "module!" would disable all functions that

make use of "module#" and CLEAR "module#," would re-enable these functions.

Other instructions for testing the machine would be specific instructions

that allow one to inspect and modify the internal registers of the machine.

These would be necessary, in any case, for the maintenance personnel. An

instruction that could be used at the instruction level for checking the

integrity of a transmitted byte stream is a cyclic redundancy check, which

employs a check polynomial up to 32 terms [30].

The upshot of the above is that the MCF architecture should directly

support, via its instruction set, a host of well-known fault tolerance and self

checking techniques, e.g., module isolation, memory parity codes, concentric

layering, and cyclic coding for data transmission.

b. Diagnostics

A particularly important aspect of nonconcurrent BIT is programmed diagnos-

tics. Programmed diagnostics are an especially flexible and inexpensive way of

insuring the ultimate maintainability and reliability of a system. Programmed

diagnostics have other advantages as well. They can be run more quickly than

external or manual tests. They are less likely to return erroneous diagnoses

than human testers. Assuming that support hardware and software are functional,

one can trust programmed diagnostics to always execute the complete set of

diagnostic procedures (often highly complex) needed to check out an observed or

hypothesized failure.

Once the first-echelon BIT facilities have detected and reported an error

condition, it may be necessary to execute the resident diagnostic routines in

order to localize the error. Diagnostics are also of value as a self test at

startup or powerup. When a powerup signal is generated an abbreviated diagnos-

tic routine may be called to perform a low-level checkout of the system's major

components. This includes such actions as verifying that all circuitry is

functional, writing and reading certain known patterns (e.g., all ones, all

zeros, alternating ones and zeros) in all memory locations and registers,

37

1

transferring such patterns over the busses with checks of the data at source and

destination, noting that all devices respond correctly to wakeup requests, or

executing short segments of code whici produce known outputs and checking those

outputs. The principal uses of diagnostics, therefore, will be for verifying

the soundness of the system in initia" startup tests; precautionary diagnostics

while the system or module is idle or dormant; diagnosing modules after a

failure has occurred; periodic testing of modules (also known as "flexing" or

"roving") to verify that they are still functional.

c. Software-Oriented Test and Recovery

A relatively unexplored technique which shows some promise of improving

overall system reliability is the use of fault-tolerant software [31, 32]. With

respect to software, fault tolerance implies three distinct functions: the

ability to check the results of a computation (including the ability and

intelligence to discriminate between faulty and fault-free computations), the

ability to perform computation recovery, and the ability to reconfigure

software. This technique necessarily requires a high degree of sophistication,

and, despite potentially high payoffs, work in this field is still at the

pioneering stage.

As in any implementation of fault tolerance, the first requirement for

realizing software fault tolerance is the ability to recognize faulty computa-

tions. This ability demands a high degree of forethought and has the best

probability of success when made a primary design goal. Some of the conceivable

means available for checking the validity or correctness of a software module in

real time include the use of watch-dog timers, address-in-bounds checks, and

executable specification assertions.

A watch-dog timer may be included as an independent timing element which

clocks and monitors the execution time of modules, interrupts, loops, or other

program entities. Thus, it is possible to recognize suspicious processes by the

amount of time consumed in the process. A process which is malfunctioning

(i.e., violating its intended function) frequently performs futile computations

or finds itself caught within an infinite loop. Wildly looping software or

38

r

1 I
I
I

"dead" processes (e.g., processes which wait on another hardware or software

module that never responds) will then cause the watch-dog timer to timeout or

attempt to interrogate the suspected process.

The address-in-bounds check detects the illegal use of addresses. Data and

program addresses are often constrained to certain zones of the address space.

A simple algorithm can then check that data and instruction addresses fall

within the range which corresponds to these particular data and instructions.

MCF architecture definition supports hardware checks for address-in-bounds by

the memory management scheme [6].

A common means of testing module validity is the dynamic assertion. Certain

programming languages (e.g., Ada, the primary MCF high-order language) allow the

inclusion of predicates placed at entry and exit points of a module. The use of

assertions in conjuntion with program correctness proofs provides a method for

on-line checking to see that a program module meets its formal specification.

Assertions offer a form of software redundancy; the failure of an assertion

(i.e., when the asserted predicate tests false) during program execution is

sufficient to indicate the existence of a fault in either the runtime module or

the hardware associated with the module.

Once a fault has been recognized by the above or other means, some form of

recovery is possible. For software exceptions, the analogue of the RETRY after

a hardware exception is the idea of computation recovery (also known as backward

recovery, rollback-and-retry). RETRY enables the program to continue execution

after discovery of a fault. In this scheme, it is necessary to establish

recovery points at various locations in the execution of the program. This is

done by saving selected data or register values at the various points. For

instance, a core image can be written from memory to backup storage, enabling

the faulted program to back up and reattempt to execute the procedure(s)

following the recovery point. Returning to a recovery point also opens the way

for software reconfiguration, which will be discussed later. The costs incurred

by computation recovery merit closer analysis since significant space could be

required for saving the state of the computation at a recovery point and since

the amount of time spent in retrying the faulted computation sequence could

possibly dominate the cost of computation. In light of these factors, it would

be worthwhile to explore cost-saving measures for computation recovery.

39

40

Instructions that support automatic recovery would be very effective. For

instance, an instruction that designates a recovery point, REC0VERYP0INT #N,

when executed would save some suitable image of the computation process in a

recovery cache. Executing REC0VERYP0INT #N, AddrList would force the current

contents of the recovery cache, recovery point N-l, into a main or secondary

backing store, (see Figure 8). An instruction, RECOVER #N, Addr.ist, would

reload the computation image saved at recovery point N. This would not change

the recovery cache. In this way, if RECOVERY needs to be done again, the

current image is still in cache; if RECOVERY on a prior point is required, the

recovery cache is changed to reflect the image of that prior poinc and all

intervening images are destroyed.

There are several issues that have not been discussed such as what exactly

is a recovery cache, what happens if there is no recovery point N, <\nd what is a

"suitable image of the computation process" [33]. They will not be Jiscussed

here. It is important to realize that the instructions mentioned are only a few

of the ones that might be required and many issues in "recovery" have been

ignored here. With a suitable set of instructions several different recovery

schemes, e.g., recovery blocks [29], can be more easily and efficiently

implemented.

Software reconfiguration is similar in concept to hardware reconfiguration,

but instead of replacing a faulty unit with a good copy of the unit, it attempts

to replace a faulty program module with an alternate version of the module's

function [32]. After fault detection and rollback, alternate versions of the

re-executed modules may be invoked in place of the originals. From the recovery

point to the point of program error there may be several different procedures or

modules. Therefore, there exist several different sequences of originals or

alternates that could be invoked. A simple strategy is to replace single

modules by their alternates, testing each time at the point of failure, then

replacing couples of modules if the fault is still present, etc. Since this

involves a potentially large number of rollbacks, close attention should be

paid to the costs sustained by such reconfiguration strat.-gies. The cost of

programming multiple versions of a function module is also a serious concern

[29, 34].

L.

W^H*>

MEMORY OR
BACKING STORE

Recovery Point
N-1 RECOVERY

CACHE

Recovery Point
N

CPU V "^

•

Pig. 8. Recovery Cache Block Diagram.

41

•*••" _•

I
I 4. CONCLUSION

The objective of this effort was to identify ways in which BIT can be

integrated into the MIL-STD-1862 architecture very early in the development

cycle. Since this is a radical departure from the classical approach to

computer testing, significant original work had to be done to identify error-

detecting approaches and ways to evaluate their corresponding effectiveness.

This study led to reporting mechanisms, instruction retry, error recovery

strategies, and finally to an overview of fault-tolerant software.

The initial problem was to characterize BIT-detected errors and to compare

these characteristics to MIL-STD-1862 exceptions and MIL-STD-1862 interrupts.

Some of the confusion in MIL-STD-1862 was cleared up in this respect. An

approach for reporting BIT-detected errors to software was identified. The

recommended reporting mechanism uses the current MIL-STD-1862 interrupt

facility. This recommendation was based on the similarities between

MIL-STD-1862 interrupts and BIT-detected errors. This is not to imply they are

the same -- only that they share many characteristics in common.

The ability to invoke a software handler upon reciept of a BIT signal led

to a discussion about the probable actions that might be required after

correctly handling this type of error. The upshot of this was the recommenda-

tion that the handler be designed to return to the point in the computation

process at which the error occurred. This is intimately tied in with the

required capability to resume an instruction after handling an interrupt.

Several instructions that explicitly control retry or resumption were discuss-

ed.

Looking at BIT-detected errors in a more general context, it is obvious

that an overall strategy for recovery from BIT-detected errors is mandatory.

This belief is based on the knowledge that the most common and dangerous fault

is the transient fault, which appears and just as quickly disappears from the

system. The proposed comprehensive recovery strategy involves a combination of

both hardware and software working in concert.

Nonconcurrent BIT was also considered in this study. The idea of a

system-wide diagnostic task was presented where each BIT handler was a subtask

of a larger task. Another subtask of the diagnostic task was that of building,

42

maintaining and querying an "error data base." This error data base is updated

everytime a BIT detected error is signaled. This data base can be queried by

the BIT handlers or other subtasks for information concerning the previous

history of specific modules and specific BIT eri^rs. With this information an

intelligent test and recovery strategy can be determined. This data base can

also be used to correlate information for use by maintenance personnel. One

strategy that might be proposed based on an analysis of the error data base

would be to run diagnostics on the system or certain modules. Based on this it

could be decided to test a module at a deeper level by executing module specific

test patterns. These patterns would be read into a module and the module's

response would be compared to some "gold standard." This is a hierarchy of tests

that can be run from a diagnostic subtask, e.g., a BIT handler, to quickly

determine if the module can be considered usable. Low-level hardware fault

tolerance has been suggested using BIT and hardware retry to recover from most

transient errors. For software exceptions, the analogue of the retry after a

hardware exception is the idea of computation recovery. This enables the

program to continue execution after a software exception has been raised. An

example set of instructions are presented that could be used in a computation

recovery scheme. The best work so far has been done by Lee [33], who explores

the entire recovery mechanism in greater detail.

A great deal of follow-on work needs to be done on both the very practical

problem areas of developing a comprehensive test plan for the machine implemen-

tations, as well as looking at extensions to the instruction set in the areas of

BIT error handlers, rollback-and-recovery, and fault isolation. A comprehensive

test plan needs to be evolved that addresses:

1. the effectiveness of vendor's BIT,

2. the adherence to architectural specification when BIT signals are

raised,

3. raising the proper exceptions when the architectural specifications

are violated, and

4. testing the exceptional conditions defined by the operating

system.

43

L.

The instruction set should be studied to determine if further instructions

could be added that would be useful for:

1. handling BIT-detected errors,

2. testing modules for fault isolation from a system diagnostic task, and

3. implementing a comprehensive rollback-and-recovery scheme.

RTI, in cooperation with Carnegie-Mellon University personnel, has

developed a BIT evaluation tool using a new ISP fault injection simulator. It

is recommended that this tool now be applied to candidate MCF embodiments to aid

the government in creating a maintainable MCF design to minimize future system

life cycle maintenance costs.

44

k.

I
I REFERENCES

1. Prime Item Development Specification for MCF Super-Minicomputer AN/UYK-41,
CORADCOM CR-CS-0034-001, June, 1980.

2. Prime Item Development Specification for MCF Microcomputer AN/UYK-49,
CORADCOM CR-CS-0035-001, June, 1980.

3. Clary J.B., et al., "A Preliminary Study of Built-in-Test for the Military
Computer Family," C0RADC0M-76-0100-F, March, 19,79.

4. Clary, J.B., et al., "Development of a Methodology for Verifying Military
Computer Built-in-Test Performance Specifications," C0RADC0M-80-0780-F,
September, 1980

5. Barbacci, M.B., et al., "The ISPS Computer Description Language,"
Department of Computer Science, Carnegie-Mellon University, August, 1979.

6. "Instruction Set Architecture for the Military Computer Family,"
MIL-STD-1862, 20 May, 1980.

7. Clary, J.B. and R.A. Sacane, "Self-Testing Computers," Computer, October,
1979.

8. Ball, M. and F. Hardie, "Effects and Detection of Intermittent Failures in
Digital Systems," Spring Joint Computer Conference, 1969.

9. Renneis, D.A., "Distributed Fault-Tolerant Computer Systems," Computer,
March 1980.

10. Goodenough, J.B., "Exception Handling: Issues and a Proposed Notation,"
Communications of the ACM, December, 1975.

11. Mitchell, J.G., W. Maybury, and R. Sweet, "Mesa Language Manual," Xerox
PARC CSL-79-3, April, 1979.

12. Levin, R., "Program Structures for Exceptional Condition Handling," Ph.D.
Thesis, Department of Computer Science, Carnegie-Mellon University, June,
1977.

13. BLISS Language Guide, Digital Equipment Corporation, September, 1978.

14. Ichbiah, J.D., J.G.P. Barnes, J.C. Heliard, B. Krieg-Brueckner, and
B.A. Winchmann, "Preliminary ADA Reference Manual and Rationale," ACM
SIGPLAN Notices, v. 14, no. 6, parts A and B, June, 1979.

15. STEELMAN Requirements for High Order Computer Programming Languages, DoD,
June, 1978.

16. Fuller, S.H., H.S. Stone, and W.E. Burr, "Initial Selection and Screening
of the CFA candidate architectures," AFIPS, 1979.

45

J_
•"•PHI •P

&-

REFERENCES
(Continued)

17. Prime Item Development Specification for MCF Compiter Control Panel,
CORADCOM CR-CS-0036-001, June, 1980.

18. Personal communications with Dietz and Szewerenko.

19. Sellers, F., M. Hsiao, and L. Bearnson, Error Detecting Logic for Digital
Computers, McGraw-Hill Book Company, 1961T

20. Sedmak, R.M. and H.L. Liebergot, "Fault-Tolerance cf a General Purpose
Computer Implemented by Very Large Scale Integration," Proceedings of
FTCS-8, June, 1978.

21. Carter, W. et. al., "Cost Effectiveness of Self Checking Computer Design,"
Proceedings of FTCS-7, June, 1977.

22. Liskov, B., and A. Snyder, "Exception Handling in CLU," IEEE Transactions
on Software Engineering, v. SE-5, no. 6, November, 197$.

23. Wuerges, H., "Reaktion auf Unerwuenschte Ereignisse in Hierarchisch
Strukturten Software-Systemen," Dr. Phil. Thesis, Technische Hochschule
Darmstadt, (Translation by D. Parnas) FRG, November, 1977.

24. McConnel, S. and D. Siewiorek, "C.vmp: The Implementation, Performance,
and Reliability of a Fault Tolerant Multiprocessor," Departments of
Electrical Engineering and Computer Science, CMU-CS-78-108, Carnegie-Mellon
University, March, 1978.

25. Ng, Y. and A. Avizienis, "Reliability Modeling and Prediction for
Fault-Tolerant Digital Systems," Technical Report (draft), Department of
Computer Science, UCLA, January, 1979.

26. Carter, W., et. al., "Logic Design for Dynamic and Interactive Recovery,"
IEEE-TC, November, 1971.

27. Morgan, D.E. and D.J. Taylor, "A Survey of Methods of Achieving Reliable
Software," Computer, February, 1977.

28. Meyers, G.J., Software Reliability Principles and Practices, Wiley-
Interscience Publication, 1976.

29. Randell, B., P.A. Lee, and P.C. Treleav^n, "Reliability Issues in Computing
System Design," ACM Computing Surveys, June 1978.

30. VAX11/780 Architecture Handbook, Digital Equipment Corporation, 1977.

31. Hecht, H., "Fault-Tolerant Software for Real-Time Applications," ACM
Computing Surveys, v. 8, no. 4, December, 1976.

46

L.

I
REFERENCES
(Continued)

32. Kim, K.H., "Error Detection, Reconfiguration and Recovery in Distributed
Processing Systems," Proceedings of the Distributed Computing Systems,
October, 1979.

33. Lee, P. A., N. Ghani, and K. Heron, "A Recovery Cache for the PDP-11,"
FTCS-9, June, 1979. .

34. Chen, A. and A. Avizienis, "N-Version Programming: A Fault-Tolerance
Approach to Reliability of Software Operation," FTCS-8, June, 1978.

47

***mm

i^^^m^a^m

APPENDIX A

MIL-STD-1862.ISP Description

48

Nebul a : =
BEGIN
Machine.State
[Processor Status fiord
Kernel<> := PSW<0>, [Kernel/ User mode
Last.modeO : = PSW<1>, [Previous context (Kernel/Task)
Pri<0:4> : = PSW<4:8>, [Processor priority
CO = PSW<9>, !Carry condition code
TO = PSW<10>, [Truncate cc
NO = PSW<11>, (Negative (less) cc
zo = PSW<12>, [Zero cc
Debug<0:l> := PSW<13:14>, !Debugging Control
PrivilegeO : = PSW<15>, [Privileged if set
Baseo := PSW<16> 9 * Base of context stack
SupervO : = PSW<17>, [Supervisor/Task mode
UDLEO := PSW<18> > Up/Down level exception
EAEO := PSW<19> 9 Exception on Arithmetic Error
MaxReg<0:3> := PSW<20:23>, [Number of registers in current
context

MaxPar<0:7> := PSW<24:31>, [Number of parameters in current
context
PC<0:31>, Program Counter
[Machine State Registers
Ctxp[0:l]<0:31> := MSR[0:1]<0:31>, [Context Pointers
Kctxp<0:31> := CtxpCO1 <0:31>, [Kernel
Tctxp<0:31> := Ctxp[i; <0:31>, [Task
Soft.int.req<0:31> := MSR[2]<0:31>, [Software Interrupt
Request
PSW<0:31> := MSR[3]<0 31>, [Processor Status
Vreg[0:3]<0:31> := MSR[4:7]<0:31>, !SVC and OPEX vector registers
ASR<0:31> := MSR[8]<0 .31>, [Auxillary Status
Register
ICO : = ASR<18>, ! Infinity Control
MIO = ASR<19>, [Mask for Invalid Operand
MQO = ASR<20>, [Mask for Division by Zero

MOO = ASR<21>, [Mask for Overflow
MUO = ASR<22>, [Mask for Underflow
MPO = ASR<23>, [Mask for Inexact
RC<0:1> := ASR<25:26>, [Rounding Control

I<> ,= ASR<27>, [Floating Pt. Invalid operand

Q<> ; = ASR<28>, [Floating Pt. Division by Zero

0<> • ASR<29>, [Floating Pt. Overflow
UO ; = ASR<30>, [Floating Pt. Underflow
PO ; = ASR<31>, [Floating Pt. Inexact

MMre g[o :1]<0:31> : MSR[9: LO]<0:31>, [Memory management

49

2
= 3

4
= 5
» 6
= 7

registers
Timctl<0:31> :=
Inttim[0:3]<0:31>
T0D<0:31> :=
i

[Exception codes
i

Macro Spec.error :
Macro 111.Mode
Macro II1.Param
Macro II1 .Reg :
Macro 111.Write
Macro 111.Size
Macro Ill.Addr
Macro Bad.displacement :=) 8|
Macro Context.Alignment
Macro Context.Base :=
!Arithmetic Group
Macro II1.Divisor :=
Macro Truncate := | 17|
Macro Range.error :=
Macro 111.Operation :=
Macro Div.by.Zero
Macro Overflow :=
Macro Underflow :=
Macro Inexact :=
Macro Unordered :=
Macro Task.Failure
Macro Break :=
Macro Inst.Trace :
Macro Proc.Trace :

MSR[11]<0:31>,
MSR[12:15]<0:31>,
MSR[16]<0:31>,

11

21
22
23
24

Vectors

Physical
Macro
Macro
Macro
Macro

SI
PI
MM
ME,

vec
vec
vec
vec

!,Hard

[Timer Control Reg
(Interval timers
[Time of Day

32
33
34
35

Macro PF.vec :-
Macro PR.vec :=
Macro Kernel.Save :=
Macro Exception.vec:
Macro Priv.error :=
[Macro TimerO.Vec :=
[Macro Timerl.vec :=
IMacro Timer2.Vec :=
IMacro Timer3.Vec :=
!?!The following macros
!?!size used in the ISP
!?!Operand Sizes (op.add
[Note that these are vis
Macro Dwrd := | .g«

"4l ,
"8 ,

"&•
"10(,

error "14,
"18l ,
"1C ,
"2C ,
"24 ,
"28 ,
"30 ,
"34 ,
"38 ,
"3q ,

define the
implementat
r<0p.Size>)
ible as the

[Software interrupt vector
[Parameterized Interrupts
[Memory Management Errors
!Memory system errors
Soft error "10
[Power failure
[Power restore
'.Pointer to kernel save area
[Supervisor exception handler
[Privileged instruction in user mode
[Timer 0 Vector
[Timer 1 Vector
[Timer 2 Vector
[Timer 3 Vector
values of operand type and
ion.

size fields of operands.

!8 bytes

50

I

I

!l

II

II

Macro Byte :=
Macro Hwrd :•
Macro Word :=
!?!Operand Types (op.
Macro Constant :
Macro Context
Macro Literal
Macro Memory
Macro single :
Macro double
ISize converts an operand size into

01 ,
10 ,
111 .
addr<0p.Type>)

' '0C| ,
01 ,
10 ,
11 .

!1
!2
!4

byte
bytes
bytes

h

!?!Descriptor IS the operand
!?!Register or in context stack
!?!Literal in code stream
!?!In Memory
Isingle size
IDouble size

the equivalent number of bytes
Size(ops<l:0>)<4:0> :=

BEGIN
DECODE ops =>

BEGIN
Dwrd := size = 8,
Byte := size = 1,
Hwrd := size = 2,
Word := size = 4
END

END,
!Sign extend a value VAL of size OPS to 64 bits
sxt(val<63:0>,ops<l:0>)<63:0> :=

BEGIN
DECODE ops =>

BEGIN
Dwrd := sxt
Byte := sxt
Hwrd := sxt
Word := sxt
END

END,
Macro Op.type := 35
Macro Op.size := 33
Memory.Access (US)
Macro MaxMem := | 4095) ,
!Main Memory
Mb[0:MaxMem]<0:7>,
Mw[0:MaxMem]<0:31>(increment: 4)
Md[0:MaxMem]<0:63>(increment: 8)

I/O Space

= val,
<= val<7:0>,
<= val<15:0>,
<= val<31:0>

:34) ,
= 32| ,

Model Dependent

Mb[0:MaxMem]<0:7>,
Mb[0:MaxMem]<0:7>,

!Full I/O space is 20 bits physical
ISmall amount defined for ISP's purpose

ALIGNED ADDRESSES as byte, half, word, double

!MBio["FFF00000:"FFFFFFFF]<0:7>,
MACRO 10.Min := | "FFFFF000J ,
!I/0 space may be accessed on
MBio[I0.Min:"FFFFFFFFl<0:7>,
MHio[I0.Min:"FFFFFFFF]<0:15>(increment: 2) := MBio[I0.Min:"FFFFFFFF]<0:7>,
MWio[10.Min:"FFFFFFFF]<0:31>(increments):= MBio[I0.Min:"FFFFFFFF]<0:7>,
MDio[10.Min:"FFFFFFFF]<0:63>(increment:8):= MBio[I0.Min:"FFFFFFFF]<0:7>,
MSR[0:16]<0:31> := MBio["FFFFF800:"FFFFF843]<0:7>,
[Memory read routine
read(va<31:0>,ops<l:0>,a<2:0>)<63:0> :=

BEGIN
DECODE vp(va,a)<0:U> EQL "FFF =>
BEGIN

51

[Memory
DECODE ops

BEGIN
=>

Dwrd := read = Mb[vp]@Mb[vp(va+l,a)]@Mb[vp(va+2,a)]@Mb[vp(va +3,a)]<a
Mb[vp(va+4,a)]@Mb[vp(va+5,a)]@Mb[vp(va+6,a)]@Mb[vp(va+7,a)],

Byte : = read = Mb[vp],
Hwrd := read = Mb[vp]@Mb[vp(va+l,a)],
Word := read = Mb[vp]PMb[vp(va+l,a)]@Mb[vp(va+2,a)]@Mb[vp(va+3,a)]

END,
!I/0 Space
DECODE ops =>

BEGIN
Dwrd := read = MDio[vp],
Byte := read = MBio[vp],
Hwrd := read = MHio[vp],
Word := read = MWio[vp]

END
END
END,

[Memory write routine
write(va<31:0>,ops<l:0>,a<2:0>)<63:0> :=

BEGIN
DECODE vp(va,a)<0:ll> EQL "FFF •>

BEGIN
[Memory
DECODE ops =>

BEüIN
Dwrd :• Mb

Mb
Byte := Mb
Hwrd :• Mb.
Word := Mb[vp]@Mb[vp(va+l,a)]@Mb[vp(va+2,a)]@Mb[vp(va+3,a)] = write

END,
!I/0 Space
DECODE ops

BEGIN
Dwrd := MDio[vp^
Byte := MBio[vp
Hwrd := MHio[vp_
Word := MWio[vp'

END
END
END,

Address.Translation(us)
Mptr[0:l]<0:31> := MMreq[0:l]<0:31>,
[Fields in Mptr registers
MACRO Map.addr := | 1:28J , [address of map (bits 29:31 are 0)
[Bit 29 is reserved

vp]@Mb[vp(va+l,a)]@Mb[vp(va+2,a)]@Mb[vp(va+3,a)]
vp(va+4,a)](aMb[vp(va+5,a)]@Mb[vp(va+6,a)](aMb[vp(va+7,a)]=write,
vp.
vp.

Lvp.

=>

write,
@Mb[vp(va+l,a)] = write,
@Mb[vp(va+l,a)]@Mb[vp(va+2,a)](8Mb[vp(va+3,a)]

write,
write,
write,
write

[Map address registers

52

II

• • • *

MACRO Map.reloc :=
MACRO Map.prot :=
M.ent<0:63>,
!Map entry fields
M.privO : =
M.bound<0:27> :=
M.prot<0:2> :=
M.reloc<0:28> :=
Macro M.Maxp :=
Seg.Max<0:M.Maxp>,
M.addr<0:31>,
!Memory Access Codes

3d , I set
3l| , !set
Map entry temporary

if relocation enabled
if protection enabled

MACRO M.c := 0
MACRO M.i := 1
MACRO M.r := 2
MACRO M.w := 3
MACRO M.n := 4
!Fault error codes
MACRO Inv.sup := 1
MACRO Inv.Seg := 2
MACRO Inv.accs := 3

M.ent<0>, !Privilege
M.ent<l:28>, [Virtual Address Bound

M.ent<29:31>, [Protection Key
M.ent<32:60>, [Relocation Amount

| 4| , !Implementation dependent seg. number size
[Maximum Seg number temporary

!Map address temporary

[Context Access
!Instruction fetch
[Memory read
[Memory read/write
!No Access

[Invalid access to supervisor space
!No Seg containing this address
[Access type violation

MACRO Priv.violation ':= | 4| ,
;
[Virtual to physical Address translation
i

vp(va<0:31>,mode<0:2>)<0:31> :=
BEGIN
vp = va NEXT
IF va<0> ANO NOT Superv=> M.fault(Inv.Sup) NEXT [User access to superv
IF Mptr[Va<0>]<30:31> => Seg.number(va) NEXT
IF Mptr[Va<0>]<Map.Prot> => [Protection Enabled

BEGIN
IF M.Ent<M.priv> AND NOT Privileged M.fault(Priv.Violation)NEXT
DECODE mode =>

BEGIN
M.c: = IF M.prot NEQ 'Oil => M.fault(Inv.aces),
M.i:= IF M.prot<0:l> NEQ '10 => M.fault(Inv.accs),
M.r:= IF M.prot<l:2> NEQ '01 AND

M.prot NEQ '010 => M.fault(Inv.accs),
M.w:= IF M.prot NEQ '010 => M.fault(Inv.accs),
M.n:= No.0p()

END
END NEXT

DECODE Mptr[Va<0>]<Map.Reloc> =>
BEGIN

vp<0:4> <=(tc) va<0> AND va<5:ll> EQL
vp = va<5:31> + M.relocG'000

END
END,

Seg.number(va<0:31>)<0:M.Maxp> :=
BEGIN
Seg.number = 0;
M.addr = Mptr[va<0>]<Map.addr>@'000 NEXT
Seg.max = Mw[M.addr-4] NEXT

53

"7F, [Fix for I/O Space
[Relocation Enabled

*l

=> M.fault(Inv.Seg)

REPEAT BEGIN
M.ent = Md[M.addr] NEXT IGet map entry
IF va<l:29> LEQ M.bound => LEAVE Seg.number NEXT
Seg.number = Seg.number + 1;
M.addr = M.addr + 8 NEXT
IF Seg.number GTR Seg.max
END

END,
M.fault(fcode<0:15>)<0:15> :•

BEGIN
M.fault = fcode; MMf • 1 NEXT !Set fault
RESTART Run !And abort
END,

Context.Stack.Access (US)
! Most of this section is implementation dependent
!The context stack contains the context of the currently running process.
!The top of the stack contains the current process registers.
[This stack is restricted to word (4 byte) boundaries.
!?!In most implementations the top of stack will be cached in some way.
!?!The ISP reflects one very simple mechanism.
[Context stack read
Reid.Ctx(disp<31:0>)<31:0> :=

BEGIN
DECODE disp =>

BEGIN
0 := Read.Ctx = PC, ! PC is cached in the ISP
Otherwise := Read.Ctx = Mw[vp(Ctxp[Kernel] + dispG'OO, M.c)]
END

END,
! Context Stack Write
Write.Ctx(0isp<31:0>)<31:0> : =

BEGIN
Mw[vp(Ctxp[Kernel] + DispG'OO,
END,

Reload.Ctx<31:0> :=
BEGIN
PC = Mw[vp(Ctxp[kernel], M.c)]

M.c)] = Write.Ctx

NEXT
Reload.ctx = Mw[vp(Ctxp[Kernel]-4, M.c)]
END,

Call.mechanism(us)

Call.switch implements the procedure call mechanism with parameter passing

Call.Switch<15>,
Call.Switch<14>,
Call.Switch<ll:8>,
Call.Switch<7:0>,

P.VarO : =
P.ExceptionO : =
MaxReg.New<3:0>
MaxPar.New<7:0>
pcount<31:0>,
Ctx.size<31:0>,
Call.switch(addr<31:0>)<15:0> :=

BEGIN
call.switch = read(addr,Hwrd,M
addr = addr + 2;

[Parameter counter temp
!New context size temp

i) NEXT Iget procedure descriptor

54

J

i

8

]
1
I

! Save Exception Handler

!Determine number of parameters
IF P.Var => ! variable number of parameters?

BEGIN
MaxPar.New = get.logO NEXT
IF get.log GTR 255 => Exceptional .Param)
END NEXT

[Determine size of new context
Ctx.size = Maxpar.new + Maxreg.New + 3 NEXT
write.ctx("FFFFFFFF) = PSW NEXT ! Save current PSW
!Set exception handler for this context
DECODE P.Exception =>

BEGIN
0 :• write.ctx = 0,
1 := BEGIN

write.ctx = read(addr,Hwrd,M.i) + addr NEXT
addr = addr + 2
END

END NEXT
write.Ctx("FFFFFFFE) NEXT
[Evaluate the Parameters
pcount = 0 NEXT
loop := REPEAT

BEGIN
IF pcount EQL MaxPar.New => LEAVE loop NEXT
IF op.addr()<op.type> EQL Context => !Ref to prior register

op.addr<31:0> = op.addr<31:0> + Ctx.size NEXT
Write.ctx(pcount-Maxpar.new-2)=op.addr<35:31>@op.addr<26:0> NEXT
pcount = pcount + 1
END NEXT

Icomplete the control transfer
write.ctx(O) = PC NEXT ! Save current PC
Scheck existance to -Ctx.size -1 (new PSW storage)
Ctxp[Kernel] = Ctxp[Kernel] - Ctx.size@'00 NEXT ! Point to new context
IF MaxReg GTR 0 AND MaxReg.New GTR 0 => ! Copy "SP"

write.ctx(l) = read.ctx(Ctx.size+l) NEXT !if both exist
PC = addr; ! New PC
PSW<18:31> = Call.Switch; ! New PSW
Base = 0; Superv = Superv AND addr<31>
END,

Build.stack initiates a call stack on the current stack

descriptor is same format as for Call.stack
B.exceptionO := Build.stack<14>,
B.maxreg<3:0> := Build.stack<ll:8>,
Build.stack(inc<31:0>,addr<31:0>,np<7:0>)<15:0> :=

BEGIN
Build.stack = read(addr.Hwrd.M.i) NEXT
addr = addr + 2;
Build.stack<7:0> = np; '.Number of parameters
Ctxp[Kernel] * Ctxp[Kernel] - (B.maxreg + np + 3
'.install exception handler

inc)9'00 NEXT

55

DECODE B.exception =>
BEGIN

write.ctx = 0, '.none
BEGIN

write.clx = read(addr,hwrd,M.i) + addr NEXT
addr = eddr + 2

END
END NEXT

Write.ctx(B.maxreg+np+l) NEXT
!Set psw
PSW<18:31> = Build.stack; Superv = addr<31>;Debug = 0;
PC = addr
END,

Call.restore removes a context frame from the context stack

Call.restore :=
BEGIN
Ctxp[Kernel] = Ctxp[Kernel] + (Maxreg + MaxPar + 3)0'00 NEXT
DECODE Base =>

BEGIN
psw<13:31> = Relcad.ctxO,
BEGIN

Kernel = last.mode NEXT
psw = Reload.ctx()

END
END

END,

Pop.stack removes an -entire execution stack from the context stack

I

I
I

Pop.stack :=
BEGIN
REPEAT BEGIN

Ctxp[Kernel] = Ctxp[Kernel] + (Maxreg+MaxPar+3)(3'00 NEXT
IF Base => LEAVE Pop.stack NEXT
PSW = Read.ctx("FFFFFFFF)
END

END,
0perand.Descriptors (US)
[Operand descriptor routine
[Reads an operand specifier from instruction stream and generates
!A descriptor specifying its type, size, and address
op.addr<35:0> := '
BEGIN
Local.Declarations
op.spec<7:0>, [operand specifier
Parameter(Num<7:0>)<35:0> :=

BEGIN
IF Num GTR(us) MaxPar => Exception(Il1.param) NEXT
DECODE Num NEQ 0 =>

BEGIN
Of := parameter = MaxPar,
It := BEGIN

]

56
I

I
I
I
I

Read.Ctx(Num + Maxreg) NEXT
Parameter = Read.Ctx<31:27>@"0(3Read.Ctx<26:0>
END

END
END,

op.decode<7:0> :=
BEGIN
op.spec = read(pc,byte,M.i) NEXT
pc = pc + 1 NEXT
DECODE op.spec =>

BEGIN

'000?????
'0010????

'00110???
'001110??

'001111?? :=

'?7000000 :=

'??00????

OTHERWISE :=

IShort Literal Mode
op.addr = op.spec, IConstant
BEGIN IRegister Mode
IF op.spec<3:0> EQL 0 OR op.spec<3:0> GTR Maxreg =>

Exception(Ill.Reg) NEXT
op.addr = Context?Word(3"0000000@op.spec<3:0>
END,

IShort Parameter Mode
op.addr = parameter(op.spec<2:0>),
BEGIN (Recursive Modes (parameter, indexed)
IF op.decode NEQ 0 => Exception(111.Mode) NEXT
op.decode = op.spec ISave for recursive evaluation
END,
BEGIN »Literal Mode
op.addr = Literal@op.spec<l:0>@pc NEXT
pc = pc + size(op.spec<l:0>)
END,
BEGIN [Absolute Address
op.addr= Memory@op.spec<7:6>@read(pc,Word,M.i)<31:0>NEXT
pc = pc + 4
END,
BEGIN IRegister Indirect
IF op.spec<3:0> GTR Maxreg => Exception(111.Reg) NEXT
op.addr = Memory@op.spec<7:6>@Read.Ctx(op.spec<3:0 >)
END,
BEGIN I Indexed Memory Modes
IF op.spec<3:0> GTR Maxreg => Exception(Ill.Reg) NEXT
read(pc,op.spec<5:4>,M.i) NEXT I Index
sxt(read,op.spec<5:4>) NEXT ISignExtend
op.addr<35:32> = Memory@op.spec<7:6>;
op.addr<31:0> = sxt + Read.ctx(op.spec<3:0>) NEXT
pc = pc + size(op.spec<5:4>)
END

END
END,

MAIN entry :=
BEGIN
op.decode = 0 NEXT
IF op.decodeO EQL
DECOut op.decodeO

BEGIN

0 => LEAVE op.addr NEXT I Non-recursive modes

57

'00111000

'00111001

'00111010 :=

'00111011 :=

END

BEGIN IParameter
IF fetch(op.addr,0)<63:8> => Exception(II1.param) NEXT
op.addr = parameter(fetch)
END,
BEGIN lUnscaled Index
fetch(op.addr.l) NEXT !Index
op.decode() NEXT !Base
op.addr<31:0> = op.addr + fetch
END,
BEGIN IScaled Index Single Length
fetch(op.addr,l) NEXT ! Index
op.decode() NEXT !Base
op.addr<31:0>=op.addr + fetch*size(op.addr<Op.Size>)
END,
BEGIN IScaled Index Double Length
fetch(op.addr,l) NEXT
op.decodeO NEXT
op.addr<31:0>=op.addr
END

!Index
IBase
fetch*size(op.addr<0p.Size>)*2

END
END,
Access.by.Descriptor
!fetch operand
lop.adr - descriptor of operand
!s - set for sign extend
fetch(op.adr<35:0>,s<>)<63:0> :

BEGIN
DECODE op.adr<0p.type> =>

BEGIN
Constant:* Fetch =
Context := Fetch =
Literal := Fetch =
Memory := Fetch
END NEXT
fetch = sxt(fetch,op.adr<op.size>)

op.adr<31:0>,
Read.Ctx(op.adr),
read(op.adr,op.adr<Op.size>,M.i),
read(op.adr,op.adr<Op.size>,M.r)

= > IF s
END,

Store(op.adr<35:0>)<63:0> :=
BEGIN
DECODE op.adr<op.type> =>

BEGIN
Constant
Context
Literal
Memory
END

= Exceptional 1 .write),
Write. Ctx(op.adr) = store,
Exceptional 1 .write),
Write(op.adr,op.adr<op.size>,M.w) = store

END,
0perand.Access
Get.int(d<>)<63:0> :=

BEGIN
op.addrO NEXT
IF d AND op.addr<op.type> EQL Memory =>

op.addr<op.size> = op.addr<op.size> + 1 NEXT
get.int = fetch(op.addr.l)

58

[double size

II

II

II

II

I

END,
Put.int(dO,repl<>)<63:0> : =

BEGIN
IF NOT repl =>

BEGIN
op.addr() NEXT
IF d AND op.addr<op.type> EQL Memory =>

op.addr<op.size> = op.addr<op.size> + 1
END NEXT

Store(op.addr) = put.int;
t = (put.int NEQ sxt(put.int,op.addr<op.size>)) NEXT
n = sxt<63>;
z = sxt EQL 0
END,

Get.loq<31:0> :=
BEGIN
op.addr() NEXT
get.log = fetch(op.addr.O)
END,

Put.lcg(repl<>)<31:0> : =
BtGIN
IF NOT repl => op.addr() NEXT
store(op.addr) = put.log;
n = sxt(put.log,op.addr<op.size>)<3l> NEXT
z = sxt EQL 0
END,

Get.float<79:0> :=
BEGIN
op.addr() NEXT
IF op.addr<35:32> EQL literal 9 byte =>

BEGIN
get.float = special.case() NEXT
LEAVE get.float
END NEXT

IF op.addr<op.type> EQL Memory =>
op.addr<op.size> = op.addr<op.size> + 1 NEXT

Get.float = unpack(fetch(op.addr,0),op.addr<op.size>)
END,

special.case<79:0> :=
Begin
IDecode fetch(Op.Addr.O) =>
! Begin
! special.case = ?,
! special.case = ?

I
! End"
no.op()
End,

Put.float(repl<>)<79:0> :=
BEGIN
IF NOT repl =>

BEGIN
op.addr() NEXT

59

IF op.addr<op.type> EQL Memory =>
op.addr<op.size> = op.addr<op.size> + 1

END NEXT
store(op.addr) = pack(put.float,op.addr<op.size>)
END,

Get.field(pos<31:0>,size<31:0>)<31:0> : =
BEGIN(us)
IF size GTR 32 => exception(ill.size) NEXT
IF size EQL 0 •> (get.field = 0; LEAVE get.field) NEXT
op.addr<31:0> = op.addr()<31:0> +(tc) pos<31:3> NEXT IByte Address
Memory.Chk() NEXT
pos = op.addr<l:0>@pos<2:0> NEXT IPosition from word boundary
size = size + pos -1 NEXT !End bit position
read = MASK.LEFT(read(op.addr AND "FFFFFFFA,Word+size<5>,M.r), pos) NEXT
get.field = read SRO (31-size<4:0>)
END,

Put.field(pos<31:0>, size<31:0>, repl<>)<31:0> :=
BEGIN(us)
IF size GTR 32 •> exception(ill.size) NEXT
IF size EQL 0 => LEAVE put.field NEXT
put.field = MASK.LEFT(put.field, 32-size);
IF NOT repl =>

op.addr<31:0> = op.addr()<31:0> +(tc) pos<31:3> NEXT
Memory.Chk() NEXT
pos = op.addr<l:0>(3pos<2:0> + size -1 NEXT [position of end bit
op.addr<l:0> = 0 NEXT
read = read(op.addr, Word+pos<5>, M.r) SRR (31-pos) NEXT
read = MASK.RIGHT(read, size) OR put.field NEXT
write(op.addr, Word+pos<5>, M.w) = read SLR (31-pos)
END,

** Instruction.Interpretation ** (US)
ir<7:0>, !?!instruction register
replaceO := ir<0>, ! Result in last operand fetched
long.branchO := ir<0>, ! 16 bit branch displacement
pc.back<31:0>, ! initial PC for fault recovery
Start :=

BEGIN
Soft.Int.Req = ASR = Exception = 0;
!Ctxp = Vreg = MMreg = undefined<3l:0>
Power.up() NEXT
Run()
END,

Run := BEGIN
Int.ServiceO NEXT
pc.back = pc;
ir = read(pc,byte,M.i) NEXT
pc = pc + 1 NEXT
IEX() NEXT
RESTART run
END,
REQUIRE. ISP | IEX.ISP| ,

i

lException handler
!

I
li

60

if
II
II

Exception(ecode<29:0>)<> :=
BEGIN

DECODE UDLE AND NOT Exception =>
BEGIN
0:= BEGIN lllpward to calling routines

PC = read.ctx(maxreg+MaxPar+l) NEXT !Get specified handler
IF PC NEQ 0 => !If handler exists

BEGIN
Write.ctx(maxreg+MaxPar+l) = ecode; Isave code
LEAVE lex

END NEXT
IF NOT Base => !No handler but caller exists

BEGIN
Call.restore();
RESTART Exception !Try the caller

END NEXT
!No handler and bottom of stack
Sup.eh(maxreg+MaxPar+3,Task.Failure) NEXT
Base = 1 !This is all that's left

END,
1:= Sup.eh(0,ecode) !Down to the supervisor
END NEXT
LEAVE lex

END,
Sup.eh(soff<0:31>,ecode<29:0>) := !Entry to supervisor exception handler

BEGIN
Write.ctx("FFFFFFFF) • PSW NEXT
Write.ctx(O) = PC NEXT
Superv = 1 NEXT
Build.Stack(soff,Mw[Exception.vec]<0:29>@'00,3) NEXT
Privilege = Mw[exception.vec]<31>;
Write.ctx(Maxreg+l) = ecode NEXT
Write.ctx(Maxreg+2) = Memory@Byte@pc.back<0>(3pc.back<5:31> NEXT
Write.ctx(Maxreg+3) = Context@(Maxreg+maxpar+3)<29:0>
END,

OPEX := !Unimplemented opcode handler
BEGIN

vector.cal1(0,ir)
END,
Vector.call(b<>,index<15:0>)<31:0> :=
BEGIN

DECODE index LSS Vreg[b<3'0]<0:15> =>
BEGIN
Of := index = index - Vreg[b@'0]<0:15>,
It := index = 0
END NEXT
IF index GTR Vreg[b0'O]<16:31> => index • 0;
superv = privilege = 1 NEXT 'Full privilege for vector access
Vector.call = Mw[vp(Vreg[b0'l] + indexP'OO, M.r)] NEXT
Call.switch(vector.cal1<31:2>@'00) NEXT
Privilege • Vector.cal1<0>; Debug = 0

END,
Fp.exception(ecode<4:0>) :=

BEGIN 61

OECODE ASR<ecode> •>
BEGIN
0 : =

DECODE EAE =>
BEGIN
t = 1,
exception(ecode)
END,

1 := ASR<ecode +(US) 8> = 1
END

END,
** I interrupt. Service** (us)
!?!A device may request an interrupt by storing its vector location
!?!in Ext.vec and setting the appropriate bit of Ext.int.vec. Note
!?!that this IMPLEMENTATION is for the convenience of the ISP and should
!?!not be taken literally
Ext.int.req<0:31>, !?!External interrupt request
Ext.vec[0:31]<0:31>, !?!External interrupt vector
!?!The following are set by the memory system when errors occur.
!?!A soft error will set these only if enabled in the ASR
!?!control register is set
MER<0:31>, !?!Addre_,s of failed memory location
HMEO, !?!Set if hard memory error
MMfo := lnt.service<0>, !?[Memory Management Fault
Mem.errO := Int.service<l>, !?!Memory system hard or soft error
Pwr.failO := Int.service<2>, !?!Power failure
Rp.tmp<0:5>, !Temp for priority
Int.Service<0:2> :=

BEGIN
[Internal interrupts
IF Int.Service =>

DECODE first.one(Int.Service) =>
BEGIN
0:= BEGIN [Memory management fault

MMf = 0; trap(MM.vec,4) NEXT
!Fi11 in parameters
Write.ctx(Maxreg+l) = Memory@Byte?vp<31>@vp<26: 0>NEXT
Write.ctx(Maxreg+2) = Memory@Byte@PC.back<31>@

pc.back<26:0> NEXT
Write.ctx(Maxreg+3) = seg.number NEXT [Segment number
Write.ctx(Maxreg+4) = M.fault IFault code

END,
1:= BEGIN !Memory error

Mem.err = 0; trap(ME.vec+HME@'00,l) NEXT
Write.ctx(Maxreg+l) = MER<27:0>

END,
2:= BEGIN IPower fail

pwr.fail = 0;
!?!Implementation shall flush all caches at this point
Mer = Mw[Kernel.save] NEXT
Mw[Mer] = Kctxp<0:30>@Kernel; ISave kernel context
Mw[Mer+4] = Mptr[l]; land supervisor map pointer
Trap(PF.vec.D) NEXT

62

I

!

Pri = "IF [Priority to maximum
END

END NEXT
[External Interrupts
Rp.tmp = last.one(mask.left(Ext.int.req OR Soft.int.req,Pri+l)) NEXT
IF Rp.tmp EQL 32 => LEAVE Int.service NEXT
Rp.tmp = 31 - Rp.tmp NEXT [Convert to request priority
DECODE last.one(Ext.int.req) LEQ last.one(Soft.int.req) =>

BEGIN
BEGIN [Software interrupt
Soft.Int.req<Rp.tmp> = 0;
trap(SI.vec.l) NEXT
Write.ctx(Maxreg+l) = Rp.tmp
END,
BEGIN (External Interrupt
Ext.int.req<Rp.tmp> = 0;
DECODE Mw[Ext,vec[Rp.tmp]]<0> =>

BEGIN
1:= trap(Ext.vec[Rp.tmp],0), [Just vector to it
0:= BEGIN [Parameterized Handler
trap(PI.vec.l) NEXT
IF Maxreg=> write.ctx(maxreg+l)=Mw[Ext.vec[Rp.tmp]]

END
END

Of : =

It : =

[Raise priority

END
END NEXT

Pri = Rp.tmp
END,

trap(vec<0:31>,nparms<0:7>) :=
BEGIN
Write.ctx(O) = PC NEXT
Write.ctx("FFFFFFFF) = PSW NEXT
last.mode = Kernel NEXT
Kernel = 1 NExT
build.stack(0,Mw[vec],nparms) NEXT
Base '
END,

Power.up
BEGIN
Mer

1

Mw[Kernel.save] NEXT
Kctxp = Mw[Mer] AND "FFFFFFFC; Kernel • Mw[Mer]<31>;
Mptr[l] = Mw[Mer+4];
Trap(Mw[PR.vec],0) NEXT
Pri = "IF
END,

** Instructions ** (TC)
tmp<31:0>,
tmpl<31:0>,
tmp2<31:0>,
tmp.d<63:0>,
tmp.to,

Privilege.chk :=
BEGIN

! global single precision temporaries

qlobal double precision temporary
temporary for truncate info

I 63

LL_L

BEGIN
write.ctx("FFFFFFFF) • PSW NEXT
write.ctx(O) = pc.back NEXT
superv = 1 NEXT
bui1d.stack(0,Mw[priv.error],1) NEXT
write.ctx(maxreg+l) = Memory@Byte@pc.back<31>@pc.back<2 6:0>

END
END,

Memory.Chk :=
BEGIN
IF op.addr<Op.Type> NEQ Memory => Exception(II1.addr)
END,

! integer add
ADD.ex:=

BEGIN
tmp • get.int(single) NEXT !get first operand
c@put.int(sinqle,replace) = get.int(single)+tmp
END,

! integer subtract
SUB.ex:=

BEGIN
tmp = get.int(si igle) NEXT !get minuend
c@put.int(single,replace) = get.int(single) + NOT tmp +(US) 1
END,

! integer multiply single precision
MUL.ex:=

BEGIN
tmp = get.int(single) NEXT ! get first operand
put.int(single,replace) = get.int(single)*tmp
END,

! integer divide single precision without remainder
DIV.ex:=

BEGIN
tmp = get.int(single) NEXT ! get first operand
IF tmp EQL 0 => Exception(111.Divisor) NEXT
put.int(single,replace) = get.int(single)/tmp
END,

! integer negate
NEG.ex:=

BEGIN
c@put.int(single,replace) = NOT get.int(single) +(US) 1
END,

! logical NOT
N0T.ex:=

BEGIN
put.log(rei lace) = NOT get.logO
END,

! integer remainder B over A
REM.ex:=

BEGIN
tmpl = get.int(single) NEXT
IF tmpl EQL 0 •) Exception(111.Divisor) NEXT
put.int(single.O) = get.int(single) MOD tmpl

:!

64

t I

END,
! integer modulus
M0D.ex:=

BEGIN
tmpl = get.int(single) NEXT
IF tmpl EQL 0 => Exception(II1.Divisor) NEXT
put.int = get.int(single) MOD tmpl NEXT
IF get.int<31> XOR tmpl<31> => put.int = put.int + tmpl NEXT
put.int(single.O)
END,

! integer multiply double precision
EMUL.ex:= . ! extended integer multiply

BEGIN
tmp = get.int(single) NEXT
put.int(double.O) = get.int(single)*tmp
END,

! integer divide double precision with remainder
EDIV.ex:= ! extended integer divide (with remainder)

BEGIN
tmp = get.int(single) NEXT ! get divisor
IF tmp EQL 0 => Exception(II1.Divisor) NEXT
tmp.d = get.int(double) NEXT
put.int(single.O) = tmp.d MOD tmp NEXT ! compute rem(B/A)
tmp.t = t NEXT
put.int(double,0) = tmp.d/tmp NEXT \ compute B/A
t = t OR tmp.t OR (tmp.d<63> AND tmp<31> AND put.int<63>)

' END,
integer increment and decrement by fixed constants

R = R + nnn
R = R - nnn

INC.ex := (put.int(single.l)
INC2.ex := (put.int(single.l)
INC4.ex := (put.int(single,l) = get.int(single)
INC8.ex := (put.int(single.l) = get.int(single)
DEC.ex := (put.int(single.l) = get.int(single)
! integer add single precision with carry in
ADDC.ex:= ! R = B + A + carry

BEGIN
tmp = get.int(single) NEXT
c@put.int(single,0) = get.int(single) + tmp + (US)c
END,

! integer subtract single precision with carry in
SUBC.ex:= ! R = B + (NOT A)

BEGIN
tmp = get.int(single) NEXT ! get A
c@put.int(single,0) = get.int(single) + (NOT tmp) + (us)c
END,

! sign extended move
M0V.ex:= (put.int(single.O) = get.int(single)),
! integer compare A with B
CMP.ex:= ! integer compare A with B

BEGIN
tmpl = get.int(single) NEXT
tmp2 = get.int(single) NEXT

= get.int(single)
= get.int(jingle)

1), !
2), !
4), !
8),
"FFFFFFFF),

increment by 1
increment by 2
increment by 4

+ carry

65

tmpl
tmp2

get variable
get 1st bound
get 2nd bound

get variable
get 1st bound
get 2nd bound

z = tmpl EQL tmp2;
n = tmpl LSS tmp2;
t = 0
END,

! integer compare within bounds
CMPWB.ex:= ! compare integer tmp with bounds A and

BEGIN
tmp = get.int(single) NEXT

= get.int(single) NEXT
= get.int(single) NEXT

z = tmp GEQ tmpl AND tmp LEQ tmp2;
n = tmp LSS tmpl;
t = 0
END,

! range check
RANGE.ex :=

BEGIN
tmp = get.int(single) NEXT
tmpl = get.int(single) NEXT
tmp2 = get.int(single) NEXT
IF tmp LSS tmpl OR tmp GTR tmp2 =>

except ion(Range.error)
END,

! integer compare A with ZERO
TEST.ex:= ! compare A with 0,

BEGIN
get.int(single) NEXT
z = get.int EQL 0;
n = get.int LSS 0;
t = 0
END,

ABS.ex:=
BEGIN
IF get.int(single)<0> => get.int = NOT get.int + 1 NEXT
put.int(single,0) = get.int
END,

EQL.ex:=
BEGIN
put.log(O) <= z
END,

NEQ.ex:=
BEGIN
put.log(O) <= NOT z
END,

LSS.ex:=
BEGIN
put.log(O) <= n
END,

GTR.ex:=
BEGIN
put.log(O) <= NOT (n OR z)
END,

LEQ.ex:=
BEGIN

66

[Absolute value

D

0

I

I

i' i

put.log(O) <= n OR z
END,

GEQ.ex:=
BEGIN
put.log(O) <• NOT n
END,

! arithmetic shift left and right single precision
ASH.ex:=

BEGIN
tmpl = get.int(single) NEXT
tmp2 = get.int(single) NEXT
DECODE tmpl<31:5> =>

BEGIN
"OOOOOOO :=

! R= B shifted | A| bit positions
! R = R shifted | A| bit positions
! if A >= 0: LEFT shift with zero fill
! if A < 0: RIGHT shift with sign fill
! t = 1 if sign changes during shift

! get shift specifier
! get source sign extend

"7FFFFFF :=

OTHERWISE :=

END

BEGIN
put.int(single.O) <= tmp2 SLO tmpl NEXT
t = t OR tmp2 NEQ (put.int SRD tmpl)
END,
BEGIN
put.int(single.O) = tmp2 SRD (NOT tmpl + 1)
END,

DECODE tmpl<31> =>
BEGIN
0:= BEGIN

put.int(single,0) = 0;
t = tmp2 NEQ 0
END,

1:= BEGIN
put.int(single.O) <= tmp2<31>;
t = 0
END

END

END,
! logical AND single precision
AND.ex:=

BEGIN
tmp = get.logO NEXT
put.log(replace) = get.logO AND tmp
END,

! logical OR single precision
OR.ex:=

BEGIN
tmp = get.logO NEXT
put. log (replace) = get.logO OR tmp
END,

! logical XOR single precision
X0R.ex:=

BEGIN
tmp = get.logO NEXT
put.log(O) = get.logO XOR tmp

67

L

END,
! rotate
ROT.ex :=

BEGIN
tmpl =
tmp2 =
DECODE

get.int(single) NEXT
get.int(single) NEXT
tmpl<31> =>

BEGIN
DECODE op.addr<op.size> =>

BEGIN
Dwrd
Byte
Hwrd
Word
END,

DECODE op
BEGIN
Dwrd
Byte
Hwrd
Word
END

END
END,

! Logical
LSH.ex :=

BEGIN
tmpl =
tmp2 =
DECODE

:= put.log(O)
:= put.log(O)
:= put.log(O)
:• put.log(O)

UNDEFINED!),
tmp2<7:0> SLR tmpl<4:0>,
tmp2<15:0> SLR tmpl<4:0>,
tmp2<31:0> SLR tmpl<4:0>

addr<op.size> =>

put.log(O)
put.log(O)
put.log(O)
put.log(O)

UNDEFINEDO,
tmp2<7:0> SRR (-tmpl)<4:0>,
tmp2<15:0> SRR (-tmpl)<4:0>,
tmp2<31:0> SRR (-tmpl)<4:0>

Shift

get.int(single) NEXT
get.log() NEXT
tmpl<31:5> =>

BEGIN
"OOOOOOO := put.
"7FFFFFF := put,
OTHERWISE := put,
END

END,
! logical move
MOVL.ex:= (put.log(O) = get.loc
EXCH.ex :=

BEGIN
tmp = get.logO NEXT
tmp.d = op.addr NEXT
put.log(l) = get.logO NEXT
store(tmp.d) = get.log NEXT
put.log(l) = tmp
END,

M0VA.ex:=
BEGIN
cp.addrO NEXT
Memory.Chk() NEXT
put.log(O) = op.addr
END,

M0VBK.ex:= !Move Block
BEGIN

, log(O) = tmp2 SLO tmpl,
,log(0) = tmp2 SRO (NOT tmpl +
.log(O) = 0

1),

!get A
!save location of A
Iget B and insure writable
Iwrite B into A
IWrite A into B

68

I

I

I

tmp = get.int(single) NEXT
op.addr() NEXT
Memory.Chk() NEXT
tmp.d = op.addr<31:0> NEXT
op.addr() NEXT
Memory.Chk() NEXT
DECODE tmp.d<31:0> GTR(US) op.addr<31:0> =>

BEGIN
0 := BEGIN ! start from the end

tmp.d<31:0> = tmp.d<31:0> +(US) tmp;
op.addr<31:0> = op.addr<31:0> +(US) tmp NEXT
Repeat BEGIN

IF tmp EQL(US) 0 => LEAVE movbk.ex NEXT
store(op.addr) =- read(tmp.d<31:0>,op.addr<op.size>,M.r) NEXT
tmp = tmp -(US) 1;
tmp.d = tmp.d -(US) 1;
op.addr<31:0> = op.addr<31:0> -(US) 1
END Imovbkb.loop

END, "decode case 0
1 := Repeat BEGIN ! normal direction

IF tmp EQL(US) 0 => LEAVE movbk.ex NEXT
store(op.addr) = read(tmp.d<31:0>,op.addr<op.size>,M.r) NEXT
tmp = tmp -(US) 1;
tmp.d = tmp.d +(US) 1;
op.addr<31:0> = op.addr<31:0> +(US) 1
END,

END [decode
END,

MOVM.ex:=
BEGIN
tmp = get.int(single) NEXT
get.log() NEXT
op.addr() NEXT
Memory.Chk() NEXT
Repeat BEGIN

IF tmp EQL 0 => LEAVE movm.ex NEXT
store(op.addr) = get.log NEXT
tmp = tmp -(US) 1;
op.addr<31:0> = op.addr<31:0> +(US) 1
END

END,
! logical compare zero extended
CMPU.ex:*

BEGIN
tmpl = get.log() NEXT
tmp2 = get.log() NEXT
z = tmpl EQL tmp2; I A=B
n = tmpl LSS(US) tmp2; I A<B
t = 0
END,

! clear operand and condition codes
CLR.ex:»

BEGIN
put.log(O) • 0 ! clear operand

69

1
END,

JUMP.ex:=
BEGIN
op.addr() NEXT
Memory.Chk() NEXT
PC = op.addr
END,

Floating Point Instructions
IFloating arithmetic operators REQUIRE. ISP | FLOAT. ISP) .

! floating add
addf.ex :=

BEGIN
ftmp = get.float() NEXT
fact = get.float() NEXT
float.add() NEXT
put.float(replace) = ftmp

END,
! floating subtract

subf.ex :=
BEGIN

fact = get.float() NEXT
ftmp = get.float() NEXT
fact<s> = NOT fact<s> NEXT
float.add() NEXT
put.float(replace) = ftmp

END,
! Floating Multiply
MULF.ex :=

BEGIN
ftmp = get.float() NEXT
fact = get.float() NEXT
float.mult() NEXT
put.float(replace) = ftmp
END,

! Floating Divide
DIVF.ex :=

BEGIN
fact = get.float() NEXT
ftmp = get.float() NEXT
float.div() NEXT
put.float(replace) = ftmp
END,

! Negate Floating
NEGF.ex :=

BEGIN
get.float() NEXT
put.float(replace) = NOT get.float<70> @ get.float<69:0>
END,

! Convert integer to floating
FLOAT.ex :=

BEGIN
tmpl = get.int(O) NEXT
put.float(O) = int2float(tmpl)

70

I

1

H
I!

END,
! Convert floating to integer
FIX.ex :=

BEGIN
fact = get.float() NEXT
DECODE (fact<e> EQL "7FF) AND (fact<f> NEQ 0) =>

BEGIN
0 : =

BEGIN
t = 0 NEXT
float2int(fact) NEXT
DECODE t =>

BEGIN
0 := put.int(single,0) = float2int,
1 : =

BEGIN
put.int(single,0) = float2int NEXT
t = 1
END

END
END,

1 :-
BEtIN
put.int(single,l) = get.int(si'ngle) NEXT
fp.exception(I11.Operation)
END

END -M
END,

! Move floating
MOVF.ex :=

BEGIN
put.float(O) = get.float()
END,

! Clear floating
CLRF.ex :=

BEGIN
put.float(O) = 0
END,

! Compare floating
CMPF.ex :=

BEGIN
ftmp = get.float() NEXT
fact = get.float() NEXT
float.cmp()
END,

! öquare Root floating
SQRTF.ex :=

BEGIN
fact = get.float() NEXT
put.float(O) = fp.sqrt(fact)
END,

! Absolute value floating
ABSF.ex :»

BEGIN
71

put.float(O) = 0 @ get.float()<69:0>
END,

! Round floating to integer value
RNOl.ex :=

BEGTN
fact = get.float() NEXT
put.float(O) = rnd2int(fact)
END,

! Floating Remainder
REMF.ex :=

BEGIN
fact = get.float() NEXT
ftmp = get.float() NEXT
fp.rem() NEXT
put.float(O) = ftmp
END,

branch(condition<>)<l:0> := Icommon branch routine
BEGIN
branch = long.branch +(US) 1 NEXT !Size of displacement
DECODE condition =>

BEGIN
pc = pc •• size(branch), !N0 branch
pc = pc + sxt(read(pc,branch,M.i),branch)
END

END,
!Unconditional Branch
BR.ex := (branch(l)),
[Branch on equal
BEQL.ex := (branch(z)),
!Branch not equal
BNEQ.ex := (branch(NOT z)),
!Branch less or equal
BLEQ.ex := (branch(z OR n)),
!Branch on less
BLSS.ex := (branch(n)),

BEGIN

72

BLSS.ex := (branch(n)),
!Branch greater or equal
BGEQ.ex := (branch(NOT n)),
!Branch greater than ,
BGTR.ex := (branch(NOT (n or z))),
!Branch if carry set
BCS.ex := (branch(c)),
!Branch if carry clear
BCC.ex := (branch(NOT c)),
!Branch if truncate set
BTS.e\ := (branch(t)),
!Branch if truncate clear
BTC.ex := (branch(NOT t)),
CASE.ex:=

BEGIN
tmp = get.int(single) NEXT
tmp = tmp - get.int(single) NEXT
DECODE tmp LSS(US) get.int(single) =>

BEGIN

0

II

•

pc = pc + (get.int * 2), !Sel exceeds Num - 1
pc = pc + sxt(read(pc + (tmp * 2),Hwrd,M.i),Hwrd)
END

END,
LOOP.ex:=

BEGIN
tmp = get.int(single) NEXT Iget increment
put.int(single,l) • get.int(single) + tmp NEXT !add to counter
get.int(single) NEXT Iget limit
long.branch = 1 NEXT
branch(((tmp GEQ 0) AND (put.int LEQ get.int)) OR

((tmp LSS 0) AND (put.int GEQ get.int)))
END,

ENTLP.ex:=
BEGIN
tmp = get.int(single) NEXT Iget initial counter
pc = pc + sxt(read(pc,Hwrd,M.i),Hwrd) NEXT Iget disp to loop control
DECODE read(pc,byte,M.i) =>

BEGIN
"27:= BEGIN ! LOOP

pc = pc + 1 NEXT
get.int(single) NEXT Iget increment
store(op.addr()) = tmp NEXT I load counter
tmp = get.int NEXT I save increment
get.int(single) NEXT Iget limit
long.branch = 1 NEXT
branch(((tmp GEQ 0) AND (store LEQ get.int)) OR

((tmp LSS 0) AND (store GEQ get.int)))
END,

"2D:= BEGIN
pc = pc + 1 NEXT
store(op.addr()) = tmp NEXT
get.int(single) NEXT
long.branch = 1 NEXT
branch(store LEQ get.int)
END,

"29:= BEGIN
pc = pc + 1 NEXT
store(op.addr()) = tmp NEXT
get.int(single) NEXT
long.branch = 1 NEXT
branch(store LSS get.int)
END,

"2B:= BEGIN
pc = pc + 1 NEXT
store(op.addr()) = tmp NEXT
get.int(single) NEXT
long.branch = 1 NEXT
branchCstore GEQ get.int)
END,

M2F:= BEGIN
pc = pc + 1 NEXT
store(op.addr()) * tmp NEXT
get.int(single) NEXT

-

! IBLEQ

I load counter
Iget limit

I IBLSS

I load counter
Iget limit

I DBGEQ

I load counter
Iget limit

! DBGTR

I load counter
Iget limit

73

! increment counter

long.branch = 1 NEXT
branch(store GTR get.int)
END,

OTHERWISE:= (exception(Bad.Displacement))
END !of DECODE

END,
IBLEQ.ex:=

BEGIN
store(op.addr) = get.int(sintjle) + 1 NEXT
get.int(single) NEXT !get limit
long.branch = 1 NEXT
branch(store LEO get.int)
END,

IBLSS.ex:=
BEGIN
store(op.addr) = get.int(single) + 1 NEXT !increment counter
get.int(single) NEXT iget limit
long.branch = 1 NEXT
branch(store LSS get.int)
END,

DBGEQ.ex:*
BEGIN
store(op.addr) = get.int(single) - 1 NEXT !increment counter
get.int(single) NEXT !get limit
long.branch = 1 NEXT
branch(store GEQ get.int)
END,

DBGTR.ex:=
BEGIN
store(op.addr) = get.int(single) - 1 NEXT Mncrement counter
get.int(single) NEXT !get limit
long.branch = 1 NEXT
branch(store GTR get.int)
END,

CALL.ex := !Procedure call
BEGIN
op.addr() NEXT
op.addr<30:31> = 0;
Memory.Chk() NEXT
call.switch(op.addr) NEXT
IF ir<0> => Privilege = 0
END,

SVC.ex : =
BEGIN
get.log() NEXT
vector.call(l,get.log)
END,

JSR.ex:=
BEGIN
op.addr() NEXT
Memory.Chk() NEXT
Write.Ctx(l) = Read.Ctx(l) - 4 NEXT !SP <- SP-4
write(Write.Ctx,Word,M.w) = pc NEXT
pc = op.addr<31:0>

74

i
i

Bj
i

e
fi

END,
RSR.ex:=

BEGIN
pc = read(Read.Ctx(l),Word,M.r) NEXT
Write.Ctx(l) = Read.Ctx + 4
END,

RET.ex :=
BEGIN

| call.restore()
1 END,

ERET.ex :=
BEGIN
UDLE = 0; Write.ctx(maxreg+MaxPar+l) = 0 NEXT
get.logO NEXT
Exception(get.log)
END,

ERP.ex :=
BEGIN
DECODE Base =>

BEGIN
BEGIN IThere is a caller

Get.logO NEXT
Call.restoreO NEXT
Exception(get.log) = 1 ! force to user handler

END,
exception(Context..base) !no caller

END
END,

RAISE.ex:=
BEGIN
exception(get.log())
END,

ECODE.ex :=
BEGIN
Put.log(O) = Read.ctx(maxreg+MaxPar+l) NEXT
Write.ctx(maxreg+MaxPar+l) = 0
END,

EXCEPT.ex :=
BEGIN
op.addr() NEXT
Memory.Chk() NEXT
Write.ctx(maxreg+MaxPar+l) = op.addr
END,

LPSW.ex :=
BEGIN
Privilege.ChkO Next
IF Base => exception(Context.Base) NEXT
Write.ctx(Maxreg+Maxpar+3) = get.logO
END,

SPSW.ex :*
BEGIN
Privilege.ChkO Next
IF Base •> exception!Context.Base) NEXT
put.log(O) • Read.ctx(Maxreg+Maxpar+3)

•
75

END,
BREAK.ex :=

BEGIN
Sup.eh(0,Break)
END,

NOP.ex:=
BEGIN
NO.OPO
END,

LTASK.ex :=
BEGIN
Privilege.Chk() Next
Get.int(double) NEXT
IF get.int<33:32> => exception(Context.Alignment);
IF get.int<l:0> EQL '10 => exception(spec.error) NEXT
Tctxp = get.int<63:32>;
Mptr[0] = get.int<31:0>
END,

STASK.ex :=
BEGIN
Privilege.Chk() Next
put.intfdouble.O) = Tctxp(3Mptr[0]
!Flush task context to memory
END,

TSTART.ex :=
BEGIN
Privilege.Chk() Next
Write.ctx("FFFFFFFF) = PSW NEXT
Write.ctx(O) = PC NEXT
IF get.log()<31:l> NEQ 0 => exception(spec.error) NEXT
IF ir<0> => pop.stack() NEXT
Kernel = get.log<0> NEXT
PC = read.ctx(O) NEXT
PSW = read.ctx("FFFFFFFF)
END,

TRAISE.ex :=
BEGIN
get.log() NEXT
Tstart.ex() NEXT
PC.back = pc NEXT
Exception(get.log)
END,

TINIT.ex :=
BEGIN
Privilege.Chk() Next
Write.ctx("FFFFFFFF) = PSW NEXT
Write.ctx(O) = PC NEXT
PC = get.log() NEXT
get.lögO NEXT Iget process half of psw
IF ir<0> => pop.stack() NEXT
PSW<0:15> = get.log;
Kernel = NOT Kernel NEXT
Build.stack(0,PC,0) NEXT
Base = 1

I

76
II

9

END,
SBF.ex:=

BEGIN
tmp = get.logO NEXT Iget source
tmpl = get.int(single) NEXT Iget position
put.field(ttnpl,get.1og(),0) = tmp
END,

LBFS.ex:= ILoad Bit Field (Sign extended)
BEGIN(US)
tmp = get.int(single) NEXT Iget position
get.field(tmp,get.logO) NEXT
put.int(single,0) - ((get.field SLO (32- get.log)) SRD (32- get.log))
END,

LBF.ex:= ILoad Bit Field
BEGIN
tmp = get.int(single) NEXT Iget position
put.log(O) = get.field(tmp,get.logO)
END,

SETBIT.ex:=
BEGIN
[Operation is interlocked (read-modify-write)
n = get.field(get.int(single),l) NEXT
put.field(get.int,l,0) = 1 NEXT
z = NOT n;
t = 0
END,

CLRBIT.ex:=
BEGIN
lOperation is interlocked (read-modify-write)
n = get.field(get.int(single),l) NEXT
put.field(get.int,l,0) = 0 NEXT
z = NOT n;
t = 0
END,

INVBIT.ex:=
BEGIN
lOrceration is interlocked (read-modify-write)
n = get.field(get.int(single),l) NEXT
put.field(get.int,l,0) = z = NOT n;
t = 0
END,

TSTBIT.ex:= '.Test Bit
BEGIN
n » get.field(get.int(single),l)<0> NEXT
z = NOT n;
t = 0
END,

PUSH.ex:» I push onto sp stack
BEGIN
IF maxreg EQL 0 *> exceptional 1 .reg) NEXT
•riU.CU(l) - read.ctx(l) - 4 NEXT
•r't»f*r1te.ctx,word,M.w) = get.logO

"*.
[pop from sp stack

BEGIN
IF maxreg EQL 0 => exceptional 1 .reg) NEXT
put.log(O) = read(read.ctx(l),word,M.r) NEXT
write.ctx(l) = read.ctx + 4
END,

MTS.ex:= !Move To Stack
BEGIN
tmpl • get.log() NEXT
tmp = op.addr<op.size> NEXT
store = get.logO - size(tmp) NEXT Icompute new S but don't store
write(store,tmp,M.w) = tmpl NEXT
store(op.addr) !store S now
END,

MFS.ex:= IMove From Stack
BEGIN
tmp = get.logO NEXT
tmp.d = op.addr NEXT I save addr of S
tmpl = op.addr()<op.size> NEXT Iget size A
put.log(l) = read(tmp,tmpl,M.r) NEXT Istore A
store(tmp.d) = tmp + size(tmpl) Istore new S
END,

ILIST.ex:= llnsert in doubly linked LIST
BEGIN
tmp = op.addr() NEXT Iget entry address (E)
Memory.Chk() NEXT
tmpl = op.addr() NEXT Iget address of entry to insert after (P)
Memory.Chk() NEXT
Iget address of successor of P (S) and check for write rights
tmp2 = read(tmpl,word,M.w) NEXT
read(tmp,word,M.w) NEXT Icheck write rights
read(tmp+4,word,M.w) NEXT Icheck write rights
read(tmp2+4,word,M.w) NEXT Icheck write rights
I IF tmp<l:0> OR tmpl<l:0> OR tmp2<l:0> => exception(111.Operand) NEXT
write(tmp,word,M.w) = tmp2 NEXT !E(fwd) <= S
write(tmp+4,word,M.w) = tmpl NEXT !E(back) <= P
write(tmp2+4,word,M.w) = tmp NEXT IS(back) <= E
write(tmpl,word,M.w) = tmp IP(fwd) <= E
END,

RLIST.ex:= IRemove from doubly linked LIST
BEGIN
tmp = op.addr() NEXT Iget entry address E
Memory.Chk() NEXT
tmpl = read(tmp,word,M.r) NEXT Iget address of successor (S)
tmp2 = read(tmp+4,word,M.r) NEXT Iget address of pred (P)
read(tmp2,word,M.w) NEXT Icheck access rights
read(tmpl+4,word,M.w) NEXT. Icheck access rights
IIF tmp<l:0> OR tmpl<l:0> OR tmp2<l:0> => exception(Il1.Operand) NEXT
write(tmp2,word,M.w) = tmpl NEXT IP(fwd) <= S
write(tmpl+4,word,M.w) = tmp2 NEXT IS(back) <= P
store(op.addr()) = tmp
END,

MULFIX.ex:= Multiply fixed point
BEGIN(TC)
tmp = 0 NEXT

78
I

I
I
I
I

tmpl = get.int(single) NEXT
IF tmpl<31> => (tmp<0> = 1; tmpl = -tmpl) NEXT
put.int = get.int(sinqle) NEXT
IF put.int<63> => (tmp<l> * 1; put.int = -put.int) NEXT
put.int = put.int * get.int NEXT
DECODE get.int(single)<31> =>

BEGIN
put.int • put.int SRD get.int,

put.int SLO (NOT get.int + 1)

put.int * tmp<0> * tmp<l>

IDivide fixed point

•tmpl) NEXT

-tmp.d) NEXT

put.int
END NEXT

put.int(single,0)
END,

DIVFIX.ex:=
BEGIN(TC)
tmp = 0 NEXT
tmpl = get.int(single) NEXT
IF tmpl EQL 0 => exceptional .Divisor) NEXT
IF tmpl<31> => (tmp<0> = 1; tmpl =
tmp.d = get.int(single) NEXT
IF tmp.d<63> => (tmp<l> = 1; tmp.d
DECODE get.int(single)<31> =>

BEGIN
•tmp.d = tmp.d SLO get.int,
tmp.d = tmp.d SRD (NOT get.int + 1)
END NEXT

put.int(single.O) = (tmp.d / tmpl) * tmp<0> * tmp<l>
END,

CMPS.ex:= !Compare and Swap
BEGIN
tmp = get.logO NEXT
[Serialization and Memory Lock
tmpl = get.logO NEXT
tmp2 = op.addr NEXT ISave location of second operand
DECODE z = (tmpl EQL get.logO) =>

BEGIN
(store(op.addr) = tmpl; n • tmpl LSS(US) get.log),
(store(tmp2) = tmp; n = 0)
END

!memory unlock
END,

SIZE.ex:=
BEGIN
op.addrO NEXT
put.log(O) = size(op.addr<op.size>)
END,

SETCC.ex:= !SET Condition Codes
BEGIN
eae@c@t@n@z = get.logO
END,

REPENT.ex:»
BEGIN
Privilege.chk() NEXT
tmp.d = get.int(l) NEXT
tmpl = get.logO NEXT

IREPlace ENTry in map

!Map Entry
!Map number

79

IF tmpl GTR 1 => exception(Spec.Error) NEXT
IF Mw[(Mptr[titipl]<Map.addr>(a'000)-4] LSS(US) get.logO =>

exception(Spec.error) NEXT ICheck map size(from memory)
Md[(Mptr[tmpl]<Map.addr> + get.log)@'000] = tmp.d
!Invalidate any translation buffer associated with this entry
!Update any copies of the map size
END,

MAP.ex:= !Map virtual address
BEGIN
Privilege.chk() NEXT
get.logO NEXT !address
vp(get.log,M.n) NEXT Itranslate address
put.log(O) = vp NEXT
put.log(O) = seg.number
END,

WINDOW.ex:= Iwindow to micromachine (Implementation
dependent)

BEGIN
!IF console.enabled •> Break to microcode NEXT
PC = PC + 1;
Stop()
END,

ENI INebula ISP description

80

out.ioguJ • tmp
END,

M0VA.ex:=
BEGIN
op.addr() NEXT
Memory.Chk() NEXT
put.log(O) • op.addr
END,

MOVBK.ex:= !Move Block
BEGIN

IWnte A into B

68

I

I

I

Ji.

I
I
I
I

tmpl = get.logO NEXT
tmp2 • get.logO NEXT
z • tmpl EQL tmp2;
n = tmpl LSS(US) tmp2;
t = 0
END,

! clear operand and condition codes
CLR.ex:=

8EGIN
put.log(O) = 0

! A=B
! A<B

! clear operand

69

Kvm
get.float() NEXT
put.float(replace) = NOT get.float<70> 9 get.float<69:0>
END,

! Convert integer to floating
FLOAT.ex :=

BEGIN
tmpl = get.int(O) NEXT
put.float(O) = int2float(tmpl)

70 II
.

float, cmpi)
I END,

! Square Root floating
SQRTF.ex :=

BEGIN
I fact = get.float() NEXT

put.float(O) • fp.sqrt(fact)
END,

1! Absolute value floating
ABSF.ex :=

BEGIN
71

L

!Branch if truncate set
BTS.e\ := (branch(t)),
IBranch if truncate clear
BTC.ex := (branch(NOT t)),
CASE.ex:=

BEGIN
tmp = get.int(single) NEXT
tmp = tmp - get.int(single) NEXT
DECODE tmp LSS(US) get.int(single) =>

BEGIN

72 I)

I
I
I
I

'2F: =

store(op. addr()) = tmp NEXT !load counter
get.int(single) NEXT
long.branch = 1 NEXT

Iget limit

branchtstore GEQ get.int)
END,
BEGIN ! OBGTR
pc = pc + 1 NEXT
store(op.addr()) = tmp NEXT lload counter
get.int(single) NEXT Iget limit

73

END,
JSR.ex:=

BEGIN
op.addr() NEXT
Memory.Chk() NEXT
Write.Ctx(l) = Read.Ctx(l) - 4 NEXT
write(Write.Ctx,Word,M.w) = pc NEXT
pc = op.addr<31:0>

74

!SP <- SP-4

II

!!

•

Lron.CA

I
I
I
I

BEGIN
Privilege.Chk() Next
IF Base => exception(Context.Base) NEXT
Write.ctx(Maxreg+Maxpar+3) = get.1og()
END,

SPSW.ex :=
BEGIN
Privilege.Chk() Next
IF Base => exception(Context.Base) NEXT
put.log(O) = Read.ctx(Maxreg+Maxpar+3)

75

Privilege.Chk() Next
Write.ctx("FFFFFFFF) = PSW NEXT
Write.ctx(O) = PC NEXT
PC = get.log() NEXT
get.log() NEXT !get process half of psw
IF ir<Ö> => pop.stack() NEXT
PSW<0:15> = get.log;
Kernel = NOT Kernel NEXT
Build.stack(0,PC,0) NEXT
Base = 1

76

11
B
I]

